Skip to main content
Log in

Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Non-invasive loco-regional electro-hyperthermia (EHT) plus alkylating chemotherapy is occasionally used as salvage treatment in the relapse of patients with high-grade gliomas. Experimental data and retrospective studies suggest potential effects. However, no prospective clinical results are available. We performed a single-center prospective non-controlled single-arm Phase I trial. Main inclusion criteria were recurrent high-grade glioma WHO Grade III or IV, age 18–70, and Karnofsky performance score ≥70. Primary endpoints were dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) with the combined regimen. Groups of 3 or 4 patients were treated 2–5 times a week in a dose-escalation scheme with EHT. Alkylating chemotherapy (ACNU, nimustin) was administered at a dose of 90 mg/m2 on day 1 of 42 days for up to six cycles or until tumor progression (PD) or DLT occurred. Fifteen patients with high-grade gliomas were included. Relevant toxicities were local pain and increased focal neurological signs or intracranial pressure. No DLT occurred. In some patients, the administration of mannitol during EHT or long-term use of corticosteroids was necessary to resolve symptoms. Although some patients showed responses in their primarily treated sites, the pattern of response was not well defined. EHT plus alkylating chemotherapy is tolerable in patients with relapse of high-grade gliomas. Episodes of intracranial pressure were, at least, possibly attributed to EHT but did not cause DLTs. A Phase II trial targeting treatment effects is warranted on the basis of the results raised in this trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Roizin-Towle L, Pirro JP (1991) The response of human and rodent cells to hyperthermia. Int J Radiat Oncol Biol Phys 20:751–756

    CAS  PubMed  Google Scholar 

  2. Armour EP, McEachern D, Wang Z, Corry PM, Martinez A (1993) Sensitivity of human cells to mild hyperthermia. Cancer Res 53:2740–2744

    CAS  PubMed  Google Scholar 

  3. Magin RL, Johnson RK (1979) Effects of local tumor hyperthermia on the growth of solid mouse tumors. Cancer Res 39:4534–4539

    CAS  PubMed  Google Scholar 

  4. Streffer C (1988) Aspects of metabolic change after hyperthermia. Recent Results Cancer Res 107:7–16

    CAS  PubMed  Google Scholar 

  5. Hermisson M, Wagenknecht B, Wolburg H, Glaser T, Dichgans J, Weller M (2000) Sensitization to CD95 ligand-induced apoptosis in human glioma cells by hyperthermia involves enhanced cytochrome c release. Oncogene 19:2338–2345

    Article  CAS  PubMed  Google Scholar 

  6. Komata T, Kanzawa T, Nashimoto T, Aoki H, Endo S, Nameta M, Takahashi H, Yamamoto T, Kondo S, Tanaka R (2004) Mild heat shock induces autophagic growth arrest, but not apoptosis in U251-MG and U87-MG human malignant glioma cells. J Neurooncol 68:101–111

    Article  PubMed  Google Scholar 

  7. Zolzer F, Streffer C (2000) Quiescence in S-phase and G1 arrest induced by irradiation and/or hyperthermia in six human tumour cell lines of different p53 status. Int J Radiat Biol 76:717–725

    Article  CAS  PubMed  Google Scholar 

  8. Hermisson M, Strik H, Rieger J, Dichgans J, Meyermann R, Weller M (2000) Expression and functional activity of heat shock proteins in human glioblastoma multiforme. Neurology 54:1357–1365

    CAS  PubMed  Google Scholar 

  9. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H, Brunner E, Zientkowska M, Herrmann T, Walter L, Alves F, Multhoff G, Dressel R (2007) The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 179:5523–5533

    CAS  PubMed  Google Scholar 

  10. Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G (2004) Differential up-regulation of cytosolic and membrane-bound heat shock protein 70 in tumor cells by anti-inflammatory drugs. Clin Cancer Res 10:3354–3364

    Article  CAS  PubMed  Google Scholar 

  11. Ito A, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50:515–522

    Article  CAS  PubMed  Google Scholar 

  12. Calderwood SK, Ciocca DR (2008) Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 24:31–39

    Article  CAS  PubMed  Google Scholar 

  13. Maehara Y, Kusumoto T, Kusumoto H, Anai H, Akazawa K, Sugimachi K (1988) Excised human neoplastic tissues are more sensitive to heat than the adjacent normal tissues. Eur Surg Res 20:254–259

    Article  CAS  PubMed  Google Scholar 

  14. Vaupel P, Okunieff P, Neuringer LJ (1990) In vivo 31P-NMR spectroscopy of murine tumours before and after localized hyperthermia. Int J Hyperthermia 6:15–31

    Article  CAS  PubMed  Google Scholar 

  15. Watanabe M, Tanaka R, Hondo H, Kuroki M (1992) Effects of antineoplastic agents and hyperthermia on cytotoxicity toward chronically hypoxic glioma cells. Int J Hyperthermia 8:131–138

    Article  CAS  PubMed  Google Scholar 

  16. Mueller-Klieser W, Walenta S, Kelleher DK, Dinh H, Marx E, Vaupel P (1996) Tumour-growth inhibition by induced hyperglycaemia/hyperlactacidaemia and localized hyperthermia. Int J Hyperthermia 12:501–511

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Mendez RR, Hahn GM (1989) Effects of hyperthermia on the intracellular pH and membrane potential of Chinese hamster ovary cells. Int J Hyperthermia 5:69–84

    Article  CAS  PubMed  Google Scholar 

  18. Andocs G, Renner H, Balogh L, Fonyad L, Jakab C, Szasz A (2009) Strong synergy of heat and modulated electromagnetic field in tumor cell killing. Strahlenther Onkol 185:120–126

    Article  PubMed  Google Scholar 

  19. LeVeen HH, Wapnick S, Piccone V, Falk G, Ahmed N (1976) Tumor eradication by radiofrequency therapy. Responses in 21 patients. JAMA 235:2198–2200

    Article  CAS  PubMed  Google Scholar 

  20. Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys J 79:670–679

    Article  CAS  PubMed  Google Scholar 

  21. Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol 33:225–234

    Article  CAS  PubMed  Google Scholar 

  22. Watson B (1991) The treatment of tumors with direct electric current. Med Sci Res 19:103–105

    Google Scholar 

  23. Wendtner CM, Abdel-Rahman S, Krych M, Baumert J, Lindner LH, Baur A, Hiddemann W, Issels RD (2002) Response to neoadjuvant chemotherapy combined with regional hyperthermia predicts long-term survival for adult patients with retroperitoneal and visceral high-risk soft tissue sarcomas. J Clin Oncol 20:3156–3164

    Article  CAS  PubMed  Google Scholar 

  24. Issels RD (2008) Regional hyperthermia in high-risk soft tissue sarcomas. Curr Opin Oncol 20:438–443

    Article  PubMed  Google Scholar 

  25. Fiegl M, Schlemmer M, Wendtner CM, Abdel-Rahman S, Fahn W, Issels RD (2004) Ifosfamide, carboplatin and etoposide (ICE) as second-line regimen alone and in combination with regional hyperthermia is active in chemo-pre-treated advanced soft tissue sarcoma of adults. Int J Hyperthermia 20:661–670

    Article  CAS  PubMed  Google Scholar 

  26. Hildebrandt B, Wust P, Gellermann J, Nicolaou A, Trappe RU, Felix R, Riess H, Rau B (2004) Treatment of locally recurrent rectal cancer with special focus on regional pelvic hyperthermia. Onkologie 27:506–511

    Article  CAS  PubMed  Google Scholar 

  27. Fiorentini G, Giovanis P, Rossi S, Dentico P, Paola R, Turrisi G, Bernardeschi P (2006) A phase II clinical study on relapsed malignant gliomas treated with electro-hyperthermia. In Vivo 20:721–724

    PubMed  Google Scholar 

  28. Sneed PK, Stauffer PR, McDermott MW, Diederich CJ, Lamborn KR, Prados MD, Chang S, Weaver KA, Spry L, Malec MK, Lamb SA, Voss B, Davis RL, Wara WM, Larson DA, Phillips TL, Gutin PH (1998) Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int J Radiat Oncol Biol Phys 40:287–295

    CAS  PubMed  Google Scholar 

  29. Schem BC, Krossnes BK (1995) Enhancement of ACNU treatment of the BT4An rat glioma by local brain hyperthermia and intra-arterial drug administration. Eur J Cancer 31A:1869–1874

    Article  CAS  PubMed  Google Scholar 

  30. Schem BC, Dahl O (1991) Thermal enhancement of ACNU and potentiation of thermochemotherapy with ACNU by hypertonic glucose in the BT4An rat glioma. J Neurooncol 10:247–252

    Article  CAS  PubMed  Google Scholar 

  31. Da Silva VF, Feeley M, Raaphorst GP (1991) Hyperthermic potentiation of BCNU toxicity in BCNU-resistant human glioma cells. J Neurooncol 11:37–41

    Article  CAS  PubMed  Google Scholar 

  32. Salcman M, Ebert PS (1991) In vitro response of human glioblastoma and canine glioma cells to hyperthermia, radiation, and chemotherapy. Neurosurgery 29:526–531

    Article  CAS  PubMed  Google Scholar 

  33. Mella O (1990) Fractionated hyperthermia in vivo: thermotolerance, sensitivity to BCNU and thermochemosensitivity in the BT4An rat glioma. Int J Hyperthermia 6:253–260

    Article  CAS  PubMed  Google Scholar 

  34. Cohen JD, Robins HI, Javid MJ (1990) Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. J Neurooncol 9:1–8

    Article  CAS  PubMed  Google Scholar 

  35. Schem BC, Mella O, Dahl O (1992) Thermochemotherapy with cisplatin or carboplatin in the BT4 rat glioma in vitro and in vivo. Int J Radiat Oncol Biol Phys 23:109–114

    CAS  PubMed  Google Scholar 

  36. Raaphorst GP, Yang H, Wilkins DE, Ng CE (1996) Cisplatin, hyperthermia and radiation treatment in human cisplatin-sensitive and resistant glioma cell lines. Int J Hyperthermia 12:801–812

    Article  CAS  PubMed  Google Scholar 

  37. Borkamo ED, Dahl O, Bruland O, Fluge O (2008) Global gene expression analyses reveal changes in biological processes after hyperthermia in a rat glioma model. Int J Hyperthermia 24:425–441

    Article  CAS  PubMed  Google Scholar 

  38. Eikesdal HP, Bjerkvig R, Dahl O (2001) Vinblastine and hyperthermia target the neovasculature in BT(4)AN rat gliomas: therapeutic implications of the vascular phenotype. Int J Radiat Oncol Biol Phys 51:535–544

    CAS  PubMed  Google Scholar 

  39. Kuznetsov YE, Caramanos Z, Antel SB, Preul MC, Leblanc R, Villemure JG, Pokrupa R, Olivier A, Sadikot A, Arnold DL (2003) Proton magnetic resonance spectroscopic imaging can predict length of survival in patients with supratentorial gliomas. Neurosurgery 53:565–574 discussion 574–566

    Article  PubMed  Google Scholar 

  40. Alexander A, Murtha A, Abdulkarim B, Mehta V, Wheatley M, Murray B, Riauka T, Hanson J, Fulton D, McEwan A, Roa W (2006) Prognostic significance of serial magnetic resonance spectroscopies over the course of radiation therapy for patients with malignant glioma. Clin Invest Med 29:301–311

    CAS  PubMed  Google Scholar 

  41. Szasz A, Vincze G (2006) Dose concept of oncological hyperthermia: heat-equation considering the cell destruction. J Cancer Res Ther 2:171–181

    Article  CAS  PubMed  Google Scholar 

  42. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  43. Ramm P, Couillard-Despres S, Plotz S, Rivera FJ, Krampert M, Lehner B, Kremer W, Bogdahn U, Kalbitzer HR, Aigner L (2009) A nuclear magnetic resonance biomarker for neural progenitor cells: is it all neurogenesis? Stem Cells 27:420–423

    Article  CAS  PubMed  Google Scholar 

  44. Naruse S, Higuchi T, Horikawa Y, Tanaka C, Nakamura K, Hirakawa K (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci U S A 83:8343–8347

    Article  CAS  PubMed  Google Scholar 

  45. Kahn T, Harth T, Kiwit JC, Schwarzmaier HJ, Wald C, Modder U (1998) In vivo MRI thermometry using a phase-sensitive sequence: preliminary experience during MRI-guided laser-induced interstitial thermotherapy of brain tumors. J Magn Reson Imaging 8:160–164

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed B (1991) Brain stem auditory evoked potentials as non-invasive measures of regional temperature and functional state during hyperthermia. Int J Hyperthermia 7:93–102

    Article  CAS  PubMed  Google Scholar 

  47. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  48. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537

    PubMed  Google Scholar 

  49. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  50. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The trial was supported by an unrestricted educational grant by OncoTherm GmbH, Troisdorf, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hau.

Additional information

Caecilia Wismeth and Christine Dudel contributed equally to this trial.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wismeth, C., Dudel, C., Pascher, C. et al. Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 98, 395–405 (2010). https://doi.org/10.1007/s11060-009-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0093-0

Keywords

Navigation