Skip to main content
Log in

Learning and memory: Traditional and systems approaches

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The aims of the present work were to consider the characteristics of learning and memory from the point of view of a systems approach and to compare this view with the traditional approach. Neuron activity is regarded not as a response to the synaptic influx resulting in excitation but as a means of altering the cell’s relationship with its environment, whose “action” is to eliminate discordance between the cell’s “needs” and its microenvironment. The neuronal mechanisms of learning and consolidation of memory are regarded not as formation of a stable increase in the efficiency of synaptic transmission in circuits of connected neurons, but as a system genesis event which confers new system specializations on neurons which do not have to be directly connected synaptically. The roles of the processes of selection, reconsolidatory modification of previously formed memories, gene activation, neurogenesis, and apoptosis in systems genesis occurring both in normal and pathological conditions are discussed. Individual development is regarded as a sequence of system genesis events. The systems approach is applied to the phenomenon of long-term potentiation. In conclusion, a scheme including different types and stages of memory formation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. I. Aleksandrov, The Psychophysiological Significance of the Activity of Central and Peripheral Neurons in Behavior [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  2. Yu. I. Aleksandrov, Introduction to Systems Psychophysiology. Psychology in the XXI Century [in Russian], V. N. Druzhinin (ed.), Per Se, Moscow (2004), pp. 39–85.

    Google Scholar 

  3. Yu. I. Aleksandrov, “Systems genesis and neuron death,” Neirokhimiya, 11, No. 1, 5–14 (2004).

    Google Scholar 

  4. Yu. I. Aleksandrov and I. O. Aleksandrov, “Neuron activity in the visual and motor areas of the cerebral cortex during performance of behavioral acts with the eyes open and closed,” Zh. Vyssh. Nerv. Deyat., 31, No. 6, 1179–1189 (1981).

    Google Scholar 

  5. Yu. I. Aleksandrov, T. N. Grechenko, V. V. Gavrilov, A. G. Gorkin, D. G. Shevchenko, Yu. V. Grinchenko, I. O. Aleksandrov, N. E. Maksimov, B. N. Bezdenezhnykh, and M. V. Bodunov, “Features of the formation and realization of individual experience,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 243–260 (1997).

    Google Scholar 

  6. K. V. Anokhin, “Learning and memory from the molecular genetic point of view,” in: Twentieth Sechenov Lectures [in Russian], Dialog-Moscow State University, Moscow (1996), pp. 23–47.

    Google Scholar 

  7. K. V. Anokhin, “Molecular scenarios for the consolidation of longterm memory,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 261–280 (1997).

    CAS  Google Scholar 

  8. P. K. Anokhin “The question of the compensation for impaired functions and its significance for clinical medicine. Communication I,” Khirurgiya, No. 10, 758–769 (1954).

  9. K. V. Anokhin and K. V. Sudakov, “Systems organization of behavior: novelty as the leading factor in the expression of early genes in the brain during learning,” Usp. Fiziol. Nauk., 24, No. 3, 53–70 (1993).

    PubMed  CAS  Google Scholar 

  10. P. K. Anokhin, Handbook on the Physiology of Functional Systems [in Russian], Meditsina, Moscow (1975).

    Google Scholar 

  11. B. N. Bezdenezhnykh, Dynamics of the Interaction of Functional Systems in the Structure of Activity [in Russian], Publishing House of the Institute of Psychology, Russian Academy of Sciences (2004).

  12. K. Barnar, Lectures in Experimental Pathology [in Russian], Biomedgiz, Moscow, Leningrad (1871/1937).

    Google Scholar 

  13. N. A. Bernshtein, Handbook of the Physiology of Movement and the Physiology of Activity [in Russian], Meditsina, Moscow (1966).

    Google Scholar 

  14. A. G. Gorkin, K. G. Reimann, and Yu. I. Aleksandrov, “Long-term potentiation and evoked spike responses in the cingulate cortex of freely moving rats,” Zh. Vyssh. Nerv. Deyat., 52, No. 6, 675–685 (2002).

    Google Scholar 

  15. N. V. Gulyaeva, “The non-apoptotic functions of caspase-3 in nerve tissue,” Biokhimiya, 68, No. 6, 1459–1470 (2003).

    Google Scholar 

  16. I. V. Davydovskii, General Human Pathology [in Russian], Meditsina, Moscow (1969).

    Google Scholar 

  17. A. K. Krylov, “Inadequacy of the concept of knowledge as reflexes in a cognitive model of a mobile robot,” in: Proceedings of the First Russian Conference on Cognitive Science [in Russian], Kazan State University, Kazan (2004), pp. 138–139.

    Google Scholar 

  18. I. N. Kudryashova, Neurochemical Regulation of Intracellular Interactions in Learning [in Russian], Author’s abstract of thesis for doctorate in biological sciences, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow (2004).

    Google Scholar 

  19. E. A. Kuzina, A. G. Gorkin, and Yu. I. Aleksandrov, “Dynamics of the relationship between the activity of individual cingulate cortex neurons and behavior at sequential steps of memory consolidation,” Ros. Fiziol. Zh., 90, No. 8, 113–114 (2004).

    Google Scholar 

  20. I. P. Pavlov, Lectures on Studies of the Cerebral Hemispheres [in Russian], USSR Academy of Medical Sciences Press, Moscow (1952).

    Google Scholar 

  21. M. Polanyi, Personal Knowledge. Towards a Postcritical Philosophy [Russian translation], I. A. Boduen de Kurtene BGK [Baudouin de Courtenay Press] (1998).

  22. V. D. Samuilov, “Programmed cell death in plants,” Sorosovskii Obrazovat. Zh., 7, No. 10, 12–17 (2001).

    Google Scholar 

  23. D. A. Sakharov, “Neurotransmitter multiplicity: functional significance,” Zh. Évolyuts. Biokhim. Fiziol., 26, No. 5, 733–745 (1990).

    CAS  Google Scholar 

  24. O. E. Svarnik, Formation of Individual Experience and Its Neurogenetic Support: Expression of the c-fos Gene [in Russian], Author’s abstract of thesis for doctorate in psychological sciences, Institute of Psychology, Russian Academy of Sciences, Moscow (2003).

    Google Scholar 

  25. O. E. Svarnik, K. V. Anokhin, and Yu. I. Aleksandrov, “Distribution of behaviorally specialized neurons and expression of transcription factor c-Fos in the rat cerebral cortex during training,” Zh. Vyssh. Nerv. Deyat., 51, No. 6, 758–761 (2001).

    CAS  Google Scholar 

  26. P. V. Simonov, The Emotional Brain [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  27. P. V. Simonov, Lectures on Brain Function [in Russian], Institute of Psychology, Russian Academy of Sciences, Moscow (1998).

    Google Scholar 

  28. E. N. Sokolov, “Consciousness Neurons,” Psikhologiya, 1, No. 2, 3–15 (2004).

    Google Scholar 

  29. T. M. Tret’yak and L. C. Arkhipova, “Intracellular activity of neurotransmitters,” Usp. Sovrem. Biol., 112, No. 2, 265–272 (1992).

    CAS  Google Scholar 

  30. V. B. Shvyrkov, Neurophysiological Studies of the Systems Mechanisms of Behavior [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  31. V. B. Shvyrkov, Introduction to Objective Psychology. The Neuronal Bases of the Mind [in Russian], Institute of Psychological, Russian Academy of Sciences, Moscow (1995).

    Google Scholar 

  32. V. V. Sherstnev, “Neurochemical characterization of ’silent’ cortical neurons,” Dokl. Akad. Nauk SSSR, 202, No. 6, 1473–1476 (1972).

    PubMed  CAS  Google Scholar 

  33. W. C. Abraham, B. Logan, J. M. Greenwood, and M. Dragunow, “Induction and experience-dependent consolidation of stable longterm potentiation lasting months in the hippocampus,” J. Neurosci., 22, 9626–9634 (2002).

    PubMed  CAS  Google Scholar 

  34. Yu. I. Alexandrov, “Comparative description of consciousness and emotions in the framework of systemic understanding of behavioral continuum and individual development,” in: Neuronal Bases and Psychological Aspects of Consciousness, C. Teddei-Ferretti and C. Musio (eds.), World Sci., Singapore, New York, London, Hong Kong (1999), pp. 220–235.

    Google Scholar 

  35. Yu. I. Alexandrov, “On the way towards neuroculturology: From the neuronal specializations through the structure of subjective world to the structure of culture and back again,” in: Proceedings of the International Symposium ’Perils and Prospects of the New Brain Sciences, Stockholm (2001), pp. 36–38.

  36. Yu. I. Alexandrov, Yu. V. Grinchenko, and T. Jarvilehto, “Change in the pattern of behavioral specialization of neurons in the motor cortex of the rabbit following lesion of the visual cortex,” Acta Physiol. Scand., 139, 371–385 (1990).

    Article  PubMed  Google Scholar 

  37. Yu. I. Alexandrov, Yu. V. Grinchenko, D. G. Shevchenko, R. G. Averkin, V. N. Matz, S. Laukka, and A. V. Korpusova, “A subset of cingulate cortical neurons is specifically activated during alcoholacquisition behaviour,” Acta Physiol. Scand., 171, 87–97 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. T. E. Allsopp and J. K. Fazakerley, “Altruistic cell suicide and the specialized case of the virus-infected nervous system,” Trends Neurosci., 23, 284–290 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. P. Ambroginia, L. Orsinia, C. Mancinia, P. Ferrib, S. Ciaronib, and R. Cuppinia, “Learning may reduce neurogenesis in adult rat dentate gyrus,” Neurosci. Lett., 359, 13–16 (2004).

    Article  CAS  Google Scholar 

  40. Yu. I. Arshavsky, “Long-term memory: does it have a structural or chemical basis?” Trends Neurosci., 26, 465–466 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. R. G. Averkin, A. A. Sozinov, Yu. V. Grinchenko, and Yu. I. Alexandrov, “Retrosplenial unit activity in rabbits during food-acquisition behavior performed by two sequentially learned alternative ways,” in: IBRO World Congress of Neuroscience: Abstracts, Lisbon (2003), A1240.

  42. C. H. Baily and E. R. Kandel, “Structural changes accompanying memory storage,” Ann. Rev. Physiol., 53, 397–426 (1993).

    Article  Google Scholar 

  43. F. Bartlett, Remembering, Cambridge University Press, Cambridge (1932).

    Google Scholar 

  44. P. M. Bradley, B. D. Burns, T. M. King, and A. C. Webb, “Electrophysiological correlates of prior training: an in vitro study of an area of the avian brain which is essential for early learning,” Brain Res., 708, 100–108 (1996).

    Article  PubMed  CAS  Google Scholar 

  45. G. Buzsaki and A. Kandel, “Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat,” J. Neurophysiol., 79, 1587–1591 (1998).

    PubMed  CAS  Google Scholar 

  46. A. Carleton, L. T. Petreanu, L. Lansford, and P.-M. Lledo, “Becoming a new neuron in the adult olfactory bulb,” Nature Neurosci., 6, 507–518 (2003).

    PubMed  CAS  Google Scholar 

  47. M. A. Castro-Alamancos, J. Borrell, and L. M. Garcia-Segura, “Performance in an escape task induces Fos-like immunoreactivity in a specific area of the motor cortex of the rat,” Neurosci., 49, 157–162 (1992).

    Article  CAS  Google Scholar 

  48. D. F. Clayton, “The genomic action potential,” Neurobiol. Learn. Mem., 74, 185–216 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. S. C. Cramer and M. Chopp, “Recovery recapitulates ontogeny,” Trends Neurosci., 23, 265–271 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. R. L. Day, K. N. Laland, and J. Odling-Smee, “Rethinking adaptation. The niche-construction perspective,” Persp. Biol. Med., 46, 80–95 (2003).

    CAS  Google Scholar 

  51. V. Della-Magiorell, A. B. Sekuler, L. G. Gradyl, P. J. Bennett, R. Sekuler, and R. McIntosh, “Corticolimbic interactions associated with performance on a short-term memory task modified by age,” J. Neurosci., 20, 8410–8416 (2000).

    Google Scholar 

  52. G. M. Edelman, Neural Darwinism: The Theory of Neuronal Group Selection, Basic, New York (1987).

    Google Scholar 

  53. T. Elbert, C. Pantev, C. Wienbruch, B. Rockstroh, and E. Taub, “Increased cortical representation of the fingers of the left hand in string players,” Science, 270, 305–307 (1995).

    PubMed  CAS  Google Scholar 

  54. K. A. Engel, P. Fries, and W. Singer, “Dynamic predictions: oscillations and synchrony in top-down processing,” Nature Rev. Neurosci., 2, 704–716 (2001).

    Article  CAS  Google Scholar 

  55. C. A. Erickson and R. Desimone, “Responses of macaque perirhinal neurons during and after visual stimulus association learning,” J. Neurosci., 19, 10404–10416 (1999).

    PubMed  CAS  Google Scholar 

  56. C. A. Erickson, E. Perfilieva, T. Bjork-Eriksson, A.-M. Alborn, C. Nordbrog, D. A. Peterson, and F. H. Gage, “Neurogenesis in the adult human hippocampus,” Nature Medicine, 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  57. C. Gilbert, “Adult cortical dynamics,” Physiol. Rev., 78, 467–485 (1998).

    PubMed  CAS  Google Scholar 

  58. K. Goldstein, The Organism, Am. Book Co., New York (1933).

    Google Scholar 

  59. A. G. Gorkin, Yu. I. Alexandrov, and K. G. Reynmann, “Long-term potentiation in cingulate cortex of freely moving rats,” Neurosci. Res. Commun., 21, 119–124 (1997).

    Article  CAS  Google Scholar 

  60. W. G. Hall and T. T. Bryant, “The ontogeny feeding in rats. II. Independent ingestive behavior,” J. Comp. Physiol. Psychol., 94, 736–746 (1980).

    Article  Google Scholar 

  61. G. Horn, “Pathways of the past: The imprint of memory,” Nature Rev. Neurosci., 5, 108–121 (2004).

    Article  CAS  Google Scholar 

  62. G. Horn, A. U. Nicol, and M. W. Brown, “Tracking memory’s trace,” Proc. Natl. Acad. Sci. USA, 98, 5282–5287 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. L. F. Jarskog and J. H. Gilmore, “Developmental expression of Bcl-2 protein in human cortex,” Brain Res. Dev. Brain Res., 119, 225–230 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidences for adult motor cortex plasticity during motor skill learning,” Nature, 377, 155–158 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. G. Kempermann, G. H. Kuhn, and F. H. Gage, “Experience-induced neurogenesis in the senescent dentate gyrus,” J. Neurosci., 18, 3206–3212 (1998).

    PubMed  CAS  Google Scholar 

  66. D. E. Koshland, “The bacterium as a model neuron,” Trends Neurosci., 6, 133–137 (1983).

    Article  Google Scholar 

  67. T. Koyama, K. Kato, Z. Tanaka, and T. Mikami, “Anterior cingulate activity during pain-avoidance and reward tasks in monkeys,” Neurosci. Res., 39, 421–430 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. Y. Lee, K. H. Park, S. H. Baik, and Ch. I. Cha, “Attenuation of c-Fos basal expression in the cerebral cortex of aged rat,” Neuroreport, 9, 2733–2736 (1998).

    Article  PubMed  CAS  Google Scholar 

  69. M. Leist and M. Jaattela, “Four deaths and a funeral: from caspases to alternative mechanisms,” Nature Rev., 2, 1–10 (2001).

    Google Scholar 

  70. J. Lisman, J. W. Lichtman, and J. R. Sanes, “LTP: perils and progress,” Nature Rev. Neurosci., 4, 926–929 (2003).

    Article  CAS  Google Scholar 

  71. R. C. Malenka, “The long-term potential of LTP,” Nature Rev. Neurosci., 4, 923–926 (2003).

    Article  CAS  Google Scholar 

  72. D. Manahan-Vaughan, T. Behnish, and K. G. Reymann, “ACPDmediated slow-onset potentiation is associated with cell death in the rat CA1 region in vivo,” Neuropharmacology, 38, 487–494 (1999).

    Article  PubMed  CAS  Google Scholar 

  73. H. Matthies, H. Ruethrich, T. Ott, H. K. Matthies, and R. Matthies, “Low frequency perforant path stimulation as a conditioned stimulus demonstrates correlations between long-term synaptic potentiation and learning,” Physiol. Behav., 36, 811–821 (1986).

    Article  PubMed  CAS  Google Scholar 

  74. J. C. McEachern and Ch. Shaw “An alternative to the LTP orthodoxy: a plasticity-pathology continuum model,” Brain Res. Rev., 22, 51–92 (1996).

    Article  PubMed  CAS  Google Scholar 

  75. K. Nader, G. E. Schafe, and J. E. Le Doux, “Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval,” Nature, 406, 722–726 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. K. Nader, “Response to Arshavsky: Challenging the old views,” Trends Neurosci., 26, 466–468 (2003).

    Article  CAS  Google Scholar 

  77. J. Najbauer and M. Leon, “Olfactory experience modulates apoptosis in the developing olfactory bulb,” Brain Res., 674, 245–251 (1995).

    Article  PubMed  CAS  Google Scholar 

  78. E. J. Nestler and G. K. Aghajanian, “Molecular and cellular basis of addiction,” Science, 278, 58–63 (1997).

    Article  PubMed  CAS  Google Scholar 

  79. J. A. Paton and F. N. Nottebohm, “Neurons generated in the adult brain are recruited into functional circuits,” Science, 225, 1046–1048 (1984).

    PubMed  CAS  Google Scholar 

  80. L. A. Pettino and P. F. Marentette, “Babbling in the manual mode: evidence for the ontogeny of language,” Science, 251, 1493–1296 (1991).

    Google Scholar 

  81. J. Piaget, Play, Dreams, and Imitation in Childhood, Norton, New York (1951).

    Google Scholar 

  82. J. Prickaerts, G. Koopmans, A. Blokland, and A. Scheepens, “Learning and adult neurogenesis: Survival with or without proliferation?” Neurobiol. Learn. Mem., 81, 1–11 (2004).

    Article  PubMed  Google Scholar 

  83. J. B. Ranck, “Studies on single neurones in dorsal hippocampal formation and septum in unrestrained rats: I. Behavioral correlates and firing repertoires,” Exptl. Neurol., 41, 461–555 (1973).

    Article  Google Scholar 

  84. C. Ranganath and G. Rainer, “Neural mechanisms for detecting and remembering novel events,” Nature Rev. Neurosci., 4, 193–202 (2003).

    Article  CAS  Google Scholar 

  85. C. Raoul, B. Pettman, and C. E. Henderson, “Active killing of neurons during development and following stress: a role for p75 NTR and Fas?” Curr. Opin. Neurobiol., 10, 111–117 (2000).

    Article  PubMed  CAS  Google Scholar 

  86. C. R. Rose, “Intracellular Na + regulation in neurons and glia: functional implications,” The Neuroscientist, No. 3, 85–88 (1997).

  87. S. J. Sara, “Retrieval and reconsolidation: toward a neurobiology of remembering,” Learn. Mem., 7, 73–84 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. K. Shima, H. Mushiake, N. Saito, and T. Tanji, “Role for cells in the presupplementary motor area in updating motor plans,” Proc. Natl. Acad. Sci. USA, 93, 8694–8698 (1996).

    Article  PubMed  CAS  Google Scholar 

  89. T. J. Shors and L. D. Matzel, “Long-term potentiation [LTP]: what’s learning got to do with it?” Behav. Brain Sci., 20, 597–655 (1997).

    Article  PubMed  CAS  Google Scholar 

  90. T. J. Shors, G. Miesegaes, A. Beylin, M. Zhao, T. Rydel, and E. Gould, “Neurogenesis in the adult is involved in the formation of trace memories,” Nature, 410, 372–376 (2001).

    Article  PubMed  CAS  Google Scholar 

  91. E. A. Stone, T. Zhang, S. John, D. Filer, and G. Bing, “Effect of locus coeruleus lesion on c-fos expression in the cerebral cortex caused by yohimbine injection or stress,” Brain Res., 603, 181–185 (1993).

    Article  PubMed  CAS  Google Scholar 

  92. H. A. Swadlow and T. P. Hicks, “Subthreshold receptive fields and baseline excitability of “silent” SI callosal neurons in awake rabbits: contributions of AMPA/kainate and NMDA receptors,” Exptl. Brain Res., 115, 403–409 (1997).

    Article  CAS  Google Scholar 

  93. H. Tanila, M. Shapiro, M. Gallagher, and H. Eichenbaum, “Brain aging: changes in the nature of information coding by the hippocampus,” J. Neurosci., 17, 5155–5166 (1997).

    PubMed  CAS  Google Scholar 

  94. E. Thompson and F. J. Varela, “Radical embodiment: neural dynamics and consciousness,” Trends Cogn. Sci., 5, 418–425 (2001).

    Article  PubMed  Google Scholar 

  95. L. T. Thompson and P. J. Best, “Long-term stability of the placefield activity of single units recorded from the dorsal hippocampus of freely behaving rats,” Brain Res., 509, 299–308 (1990).

    Article  PubMed  CAS  Google Scholar 

  96. K. S. Vikman, A. W. Duggan, and P. J. Siddall, “Increased ability to induce long-term potentiation of spinal dorsal horn neurons in monoarthritic rats,” Brain Res., 990, 51–57 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. S. Wirth, M. Yanike, L. M. Frank, A. C. Smith, E. N. Brown, and A. S. Wendy, “Single neurons in the monkey hippocampus and learning new associations,” Science, 300, 1578–1581 (2003).

    Article  PubMed  CAS  Google Scholar 

  98. Z. M. Xue, “The studies on neurogenesis induced by brain injury in adult ring dove,” Cell Res., 8, 151–162 (1998).

    Google Scholar 

  99. J. Yuan and B. A. Yankner, “Apoptosis in the nervous system,” Nature, 407, 802–809 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 55, No. 6, pp. 842–860, November–December, 2005.

This article is based on a report presented to the Second Simonov Conference, April 20, 2004 (“Learning and memory: a systems perspective,” Second Simonov Conference, Russian Academy of Sciences Press, Moscow (2004), pp. 3–51).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, Y.I. Learning and memory: Traditional and systems approaches. Neurosci Behav Physiol 36, 969–985 (2006). https://doi.org/10.1007/s11055-006-0133-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-006-0133-6

Key Words

Navigation