Skip to main content
Log in

Synthesis of t-Te and a-Se nanospheres using continuous wave visible light

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We demonstrate a simple and cost-effective method for the synthesis of elemental Se and Te nanoparticles. The method employs irradiation of bulk Se and Te by visible light, continuous wave sources and results in uniform deposition of nanoparticles on various substrates. The process is fast and avoids the steps of pre- and post-treatment involved in solution-based approaches. The resulting Se and Te nanoparticles have an exclusively spherical morphology and diameters in the order of 50 and 100 nm, respectively. Spectroscopic and electron microscopy characterization reveals that Te nanospheres are single crystalline with trigonal structure and can develop an oxidized surface shell, while Se nanoparticles are identified as purely amorphous. At high-yield growth, Te nanospheres aggregate but preserve their particulate morphology while amorphous Se nanoparticles form fractal-like morphologies. The present work might be important for various areas such as biomedical applications owning to the high antibacterial activity of Te and Se nanostructures and the avoidance of hazardous chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basol BM, McCandless B (2014) Brief review of cadmium telluride-based photovoltaictechnologies. J Photonics Energy 4:040996

    Article  Google Scholar 

  • Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation:a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90

    Article  CAS  Google Scholar 

  • Gao S, Wang Y, Wang R, Wu W (2017) Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics. Semicond Sci Technol 32:104004

    Article  Google Scholar 

  • Gerlach E, Grosse P (1979) The physics of selenium and tellurium. Springer-Verlag, New York

    Book  Google Scholar 

  • Gordon JM, Katz EA, Feuermann D, Albu-Yaron A, Levy M, Tenne R (2008) Singular MoS2, SiO2 and Si nanostructures—synthesis by solar ablation. J Mater Chem 18:458–462

    Article  CAS  Google Scholar 

  • Guisbiers G, Mimun LC, Mendoza-Cruz R, Nash KL (2017) Synthesis of tunable tellurium nanoparticles. Semicond Sci Technol 32:04LT01

    Article  Google Scholar 

  • He W, Osmulski ME, Lin J, Koktysh DS, Choi B, Dickerson JH (2013) Surfactant induced colloidal growth and selective electrophoretic deposition of one-dimensional Te nanocrystals. Mater Lett 110:148–151

    Article  CAS  Google Scholar 

  • Kim MS, Ma XH, Cho KH, Jeon SY, Hur K, Sung YM (2018) A generalized crystallographic description of all tellurium nanostructures. Adv Mater 30:1702701

    Article  Google Scholar 

  • Klonowska A, Heulin T, Vermeglio A (2005) Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol 71:5607–5609

    Article  CAS  Google Scholar 

  • Kolobov AV, Tominaga J (2012) Chalcogenides: metastability and phase change phenomena, Springer Series in Materials Science, vol 164. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Kong H, Yeo JB, Lee HY (2015) A study on the properties of tellurium-oxide thin films based on the variable sputtering gas ratio. J Korean Phys Soc 66:1744–1749

    Article  CAS  Google Scholar 

  • Levy M, Albu-Yaron A, Tenne R, Feuermann D, Katz EA, Babai D, Gordon JM (2010) Synthesis of inorganic fullerene-like nanostructures by concentrated solar and artificial light. Isr J Chem 50:417–425

    Article  CAS  Google Scholar 

  • Li Z, Zheng S, Zhang Y, Teng R, Huang T, Chen C, Lu G (2013) Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method. J Mater Chem A 1:15046

    Article  CAS  Google Scholar 

  • Lin ZH, Lee CH, Chang HY, Chang HT (2012) Antibacterial activities of tellurium nanomaterials. Chem Asian J 7:930–934

    Article  CAS  Google Scholar 

  • Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y (2016) Tellurium as a high-performance elemental thermoelectric. Nat Commun 7:10287

    Article  CAS  Google Scholar 

  • Liu J, Liang C, Zhu X, Lin Y, Zhang H, Wu S (2016) Understanding the solvent molecules induced spontaneous growth of uncapped tellurium nanoparticles. Sci Rep 6:32631

    Article  CAS  Google Scholar 

  • Lu HB, Chan BCY, Wang X, Chua HT, Raston CL, Albu-Yaron A, Levy M, Popowitz-Biro R, Tenne R, Feuermann D, Gordon JM (2013) High-yield synthesis of silicon carbide nanowires by solar and lamp ablation. Nanotechnology 24:335603

    Article  Google Scholar 

  • Palik ED (1998) Handbook of optical constants of solids. Elsevier Science, USA

    Google Scholar 

  • Salinga M, Kersting B, Ronneberger I, Jonnalagadda VP, Vu XT, Gallo ML, Giannopoulos I, Cojocaru-Mirédin O, Mazzarello R, Sebastian A (2018) Monatomic phase change memory. Nat Mater 17:681–685

    Article  CAS  Google Scholar 

  • Van Overschelde O, Guisbiers G (2015) Photo-fragmentation of selenium powder by Excimer laser ablation in liquids. Opt Laser Technol 73:156–161

    Article  Google Scholar 

  • Van Overschelde O, Guisbiers G, Snyders R (2013) Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. APL Mater 1:042114

    Article  Google Scholar 

  • Vasileiadis T, Yannopoulos SN (2014) Photo-induced oxidation and amorphization of trigonal tellurium: a means to engineer hybrid nanostructures and explore glass structure under spatial confinement. J Appl Phys 116:103510

    Article  Google Scholar 

  • Vasileiadis T, Yannopoulos SN (2015) Laser-assisted growth and processing of functional chalcogenide nanostructures. In: Petkov P, Tsiulyanu D, Kulisch W, Popov C (eds) Nanoscience advances in CBRN agents detection, information and energy security, NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht, pp 17–27

    Google Scholar 

  • Vasileiadis T, Dracopoulos V, Kollia M, Yannopoulos SN (2013) Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO2 nanowires. Sci Rep 3:1209

    Article  Google Scholar 

  • Voleská I, Akola J, Jóvári P, Gutwirth J, Wágner T, Vasileiadis T, Yannopoulos SN, Jones RO (2012) Phys Rev B - Condens Matter Mater Phys 86:094108

    Article  Google Scholar 

  • Wang Q, Webster TJ (2012) Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices. J Biomed Mater Res - Part A 100 A:3205

    Article  Google Scholar 

  • Wu L, Huang W, Wang Y, Zhao J, Ma D, Xiang Y, Li J, Ponraj JS, Dhanabalan SC, Zhang H (2018) 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv Funct Mater 28:1806346

    Google Scholar 

  • Yannopoulos SN, Andrikopoulos KS (2004) Raman scattering study on structural and dynamical features of noncrystalline selenium. J Chem Phys 121:4747–4758

    Article  CAS  Google Scholar 

  • Zallen R (2007) The physics of amorphous solids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Zare B, Faramarzi MA, Sepehrizadeh Z, Shakibaie M, Rezaie S, Shahverdi AR (2012) Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities. Mater Res Bull 47:3719–3725

    Article  CAS  Google Scholar 

  • Zhong L, Wang J, Sheng H, Zhang Z, Mao SX (2014) Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512:177–180

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the project “National Infrastructure in Nanotechnology, Advanced Materials and Micro-/ Nanoelectronics” (MIS 5002772) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020), and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Vasileiadis or Spyros N. Yannopoulos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 506 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileiadis, T., Dracopoulos, V., Kollia, M. et al. Synthesis of t-Te and a-Se nanospheres using continuous wave visible light. J Nanopart Res 21, 218 (2019). https://doi.org/10.1007/s11051-019-4657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4657-4

Keywords

Navigation