Skip to main content
Log in

Enhanced efficiency of PbS quantum dot-sensitized solar cells using plasmonic photoanode

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this report, an effort has been made to develop an efficient PbS quantum dot-sensitized photoanode by simple successive ionic layer adsorption and reduction technique to enhance the overall photovoltaic performance of PbS quantum dot-sensitized solar cells. Three strategies have been adopted for the improvement of the photovoltaic performance of PbS quantum dot-sensitized solar cells, i.e., (i) by incorporation of TiO2-Au nanocomposites, where Au nanoparticles of different sizes are embedded into a TiO2 matrix, and (ii) variation of temperature at which quantum dots are deposited (iii) by postdeposition annealing of QD-sensitized photoanode in Ar atmosphere. We have used electrophoretic deposition technique to develop the nanocomposite-doped photoanode. High-resolution transmission electron microscopy confirms that the Au particles dispersed in the TiO2 matrix vary from 2 to 50 nm and PbS quantum dot size ranges 3.5–6 nm. The optical absorption of PbS quantum dot-sensitized TiO2-Au-incorporated photoanode is substantially enhanced as confirmed from the UV-visible absorption spectra measurements. The current-voltage characteristics of all the plasmonic quantum dot-sensitized solar cells under illumination (100 mW/cm2, AM 1.5) show significant improvement in power conversion efficiency using the abovementioned strategies. The maximum power conversion efficiency observed in PbS quantum dot-based quantum dot-sensitized solar cells is 7.0%. Electroimpedance spectroscopy has been utilized to understand the recombination kinetics in these solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Funding

This research is supported by funding from CSIR scheme 03(1304)/13/EMR-II, UGC 42-1069/ 2013 (SR) and LNM Institute of Information Technology, Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganesh D. Sharma or Subhayan Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Pal, A., Chatterjee, K. et al. Enhanced efficiency of PbS quantum dot-sensitized solar cells using plasmonic photoanode. J Nanopart Res 20, 198 (2018). https://doi.org/10.1007/s11051-018-4301-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4301-8

Keywords

Navigation