Skip to main content
Log in

Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings.

Interrelationship of agglomeration, colloidal stability, and magnetic separability of nanoparticles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andreu JS (2013) Statistical mechanics of superparamagnetic colloidal dispersions under magnetic fields. Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia

  • Andreu JS, Camacho J, Faraudo J (2011a) Aggregation of superparamagnetic colloids in magnetic fields: the quest for the equilibrium state. Soft Matter 7(6):2336–2339

    Article  Google Scholar 

  • Andreu JS, Camacho J, Faraudo J, Benelmekki M, Rebollo C, Martínez LM (2011b) Simple analytical model for the magnetophoretic separation of superparamagntic dispersions in a uniform magnetic gradient. Phys Rev E 84:021402-021401–021402-021408

    Article  Google Scholar 

  • Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29–30:208–213

    Article  Google Scholar 

  • Benelmekki M, Caparros C, Montras A, Gonçalves R, Lanceros-Mendez S, Martinez LM (2011) Horizontal low gradient magnetophoresis behaviour of iron oxide nanoclusters at the different steps of the synthesis route. J Nanopart Res 13:3199–3206

    Article  Google Scholar 

  • Berge ND, Ramsburg CA (2009) Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43(13):5060–5066

    Article  Google Scholar 

  • Che BHX, Yeap SP, Ahmad AL, Lim J (2014) Layer-by-layer assembly of iron oxide magnetic nanoparticles decorated silica colloid for water remediation. Chem Eng J 243:68–78

    Article  Google Scholar 

  • Choi Y-W, Lee H, Song Y, Sohn D (2015) Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants. J Colloid Interface Sci 443:8–12

    Article  Google Scholar 

  • Cirtiu CM, Raychoudhury T, Ghoshal S, Moores A (2011) Systematic comparison of the size, surface characteristics and colloidal stability of zero valent iron nanoparticles pre- and post-grafted with common polymers. Colloids Surf A: Physicochem Eng Asp 390(1–3):95–104

    Article  Google Scholar 

  • Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43(15):3717–3726

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, Weiheim

    Book  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:1–14. https://doi.org/10.1155/2014/398569

  • De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112:945–950

    Article  Google Scholar 

  • Dickson D, Liu G, Li C, Tachiev G, Cai Y (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177

    Article  Google Scholar 

  • Ditsch A, Lindenmann S, Laibinis PE, Wang DIC, Hatton A (2005) High-gradient magnetic separation of magnetic nano-clusters. Ind Eng Chem Res 44:6824–6836

    Article  Google Scholar 

  • Faraudo J, Camacho J (2010) Cooperative magnetophoresis of superparamagnetic colloids: theoretical aspects. Colloid Polym Sci 288:207–215

    Article  Google Scholar 

  • Faraudo J, Andreu JS, Camacho J (2013) Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter 9:6654–6664

    Article  Google Scholar 

  • Fatehi MH, Shayegan J, Zabihi M, Goodarznia I (2017) Functionalized magnetic nanoparticles supported on activated carbon for adsorption of Pb(II) and Cr(VI) ions from saline solutions. J Environ Chem Eng 5(2):1754–1762

    Article  Google Scholar 

  • Friedman G, Yellen B (2005) Magnetic separation, manipulation and assembly of solid phase in fluids. Curr Opin Colloid Interface Sci 10:158–166

    Article  Google Scholar 

  • Ghosh S, Jiang W, McClements JD, Xing B (2011) Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27(13):8036–8043

    Article  Google Scholar 

  • Golas PL, Louie S, Lowry GV, Matyjaszewski K, Tilton RD (2010) Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 26(22):16890–16900

    Article  Google Scholar 

  • Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204

    Article  Google Scholar 

  • Henry C, Minier J-P, Pozorski J, Lefèvre G (2013) A new stochastic approach for the simulation of agglomeration between colloidal particles. Langmuir 29(45):13694–13707

    Article  Google Scholar 

  • Hirschbein BL, Brown DW, Whitesides GM (1982) Magnetic separations in chemistry and biochemistry. ChemTech 12:172–179

    Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  Google Scholar 

  • Jiemvarangkul P, Zhang W-X, Lien H-L (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491

    Article  Google Scholar 

  • Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle–actinide specific chelator for radioactive waste separation. Environ Sci Technol 47(21):11942–11959

    Article  Google Scholar 

  • Kim YG, Song JB, Yang DG, Lee JS, Park YJ, Kang DH, Lee HG (2013) Effects of filter shapes on the capture efficiency of a superconducting high-gradient magnetic separation system. Supercond Sci Technol 26(8):085002

    Article  Google Scholar 

  • Kong LP, Gan XJ, Ahmad AL, Hamed BH, Evarts ER, Ooi BS, Lim J (2012) Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal. Chem Eng J 197:350–358

    Article  Google Scholar 

  • Kopyl S, Bystrov V, Bdikin I, Maiorov M, Sousa ACM (2013) Filling carbon nanotubes with magnetic particles. J Mater Chem C 1(16):2860–2866

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  • Leong SS, Yeap SP, Lim J (2016) Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients. Interf Focus 6(6):20160048

    Article  Google Scholar 

  • Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4(9):4991–5000

    Article  Google Scholar 

  • Liang L (2013) Particle electrophoresis and magnetophoresis in microchannels. Clemson University, Clemson

    Google Scholar 

  • Lim J, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5(1):217–226

    Article  Google Scholar 

  • Lim J, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8(11):1683–1692

    Article  Google Scholar 

  • Lim J, Yeap SP, Leow CH, Toh PY, Low SC (2014a) Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy. J Colloid Interface Sci 421:170–177

    Article  Google Scholar 

  • Lim J, Yeap SP, Low SC (2014b) Challenges associated to magnetic separation of nanomaterials at low field gradient. Sep Purif Technol 123:171–174

    Article  Google Scholar 

  • Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D (2015) Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep 1(4):280–291

    Article  Google Scholar 

  • Matlochová A, Plachá D, Rapantová N (2013) The application of nanoscale materials in groundwater remediation. PJoES 22(5):1401–1410

    Google Scholar 

  • Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Tech Adv Mater 8(1–2):71–75

    Article  Google Scholar 

  • Moeser GD, Roach KA, Green WH, Alan Hatton T, Laibinis PE (2004) High-gradient magnetic separation of coated magnetic nanoparticles. AICHE J 50(11):2835–2848

    Article  Google Scholar 

  • Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  Google Scholar 

  • Morales MA, Jain TK, Labhasetwar V, Leslie-Pelecky DL (2005) Magnetic studies of iron oxide nanoparticles coated with oleic acid and pluronic® block copolymer. J Appl Phys 97(10):10Q905

    Article  Google Scholar 

  • Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC (2015) Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J Membr Sci 493:134–146

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814

    Article  Google Scholar 

  • Pouran SR, Raman AAA, Daud WMAW (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35

    Article  Google Scholar 

  • Ramimoghadam D, Bagheri S, Hamid SBA (2014) Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 368:207–229

    Article  Google Scholar 

  • Sakulchaicharoen N, O'Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale fepd particles. J Contam Hydrol 118(3):117–127

    Article  Google Scholar 

  • Santos HM, Lodeiro C, Capelo-Martínez J-L (2009) The power of ultrasound. In: Capelo-Martínez JL (ed) Ultrasound in chemistry. Wiley-VCH, Weinheim, pp 1–16

    Google Scholar 

  • Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906

    Article  Google Scholar 

  • Saville SL, Woodward RC, House MJ, Tokarev A, Hammers J, Qi B, Shaw J, Saunders M, Varsani RR, St Pierre TG, Mefford OT (2013) The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nano 5:2152–2163

    Google Scholar 

  • Sun F, He S (2014) Transformation inside a null-space region and a dc magnetic funnel for achieving an enhanced magnetic flux with a large gradient. Prog Electromagn Res 146:143–153

    Article  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632

    Article  Google Scholar 

  • Toh PY, Ng BW, Chong CH, Ahmad AL, Yang J-W, Lim J (2014) Magnetophoretic separation of microalgae: the role of nanoparticles and polymer binder in harvesting biofuel. RSC Adv 4(8):4114–4121

    Article  Google Scholar 

  • Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349(1):293–299

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415

    Article  Google Scholar 

  • Wu W, Ichihara G, Suzuki Y, Izuoka K, Oikawa-Tada S, Chang J, Sakai K, Miyazawa K, Porter D, Castranova V (2014) Dispersion method for safety research on manufactured nanomaterials. Ind Health 52(1):54–65

    Article  Google Scholar 

  • Yavuz CT, Mayo JT, WW Y, Prakash A, Falkner JC, Yean S, Cong L, Shipley HJ, Kan A, Tomson M, Natelson D, Colvin VL (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967

    Article  Google Scholar 

  • Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64(10):2510–2521

    Article  Google Scholar 

  • Yeap SP, Ahmad AL, Ooi BS, Lim J (2012) Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42):14878–14891

    Article  Google Scholar 

  • Yeap SP, Leong SS, Ahmad AL, Ooi BS, Lim J (2014) On size fractionation of iron oxide nanoclusters by low magnetic field gradient. J Phys Chem C 118(41):24042–24054

    Article  Google Scholar 

  • Yeap SP, Ahmad AL, Ooi BS, Lim J (2015) Manipulating cluster size of polyanion-stabilized Fe3O4 magnetic nanoparticle clusters via electrostatic-mediated assembly for tunable magnetophoresis behavior. J Nanopart Res 17:1–22

    Article  Google Scholar 

  • Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:1–17. https://doi.org/10.1155/2012/435873

  • Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind Eng Chem Res 52(42):14944–14954

    Article  Google Scholar 

  • Zhang TC, Surampalli RY, Lai KCK, Hu Z, Tyagi RD, Lo IMC (2009) Nanotechnologies for water environment applications. American Society of Civil Engineers, Reston

    Book  Google Scholar 

  • Zhang S, Wu W, Xiao X, Zhou J, Ren F, Jiang C (2011) Preparation and characterization of spindle-like Fe3O4 mesoporous nanoparticles. Nanoscale Res Lett 6(1):89

    Article  Google Scholar 

  • Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2011) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46(2):977–985

    Article  Google Scholar 

  • Zhu T, Cheng R, Liu Y, He J, Mao L (2014) Combining positive and negative magnetophoreses to separate particles of different magnetic properties. Microfluid Nanofluidics 17(6):973–982

    Article  Google Scholar 

Download references

Funding

We sincerely thank the financial support from the International Foundation for Science (IFS) (Grant No. 304/PJKIMIA/6050324/I100) and eScience Fund from MOSTI (Grant No. 304/PJKIMIA/6013393). Swee Pin Yeap thanks the financial sponsorship of Postgraduate Research Grant Scheme (RU-PRGS) (grant no. 1001/PJKIMIA/8045039) from Universiti Sains Malaysia (USM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Swee Pin Yeap or JitKang Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeap, S.P., Lim, J., Ooi, B.S. et al. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. J Nanopart Res 19, 368 (2017). https://doi.org/10.1007/s11051-017-4065-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-4065-6

Keywords

Navigation