Skip to main content
Log in

One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Self-assemblies of silver nanoprisms (AgPRs) having enhanced structural stability and optical properties have been facilely coated with polypyrrole (PPy) via the in situ polymerization of pyrrole monomers that also act as an assembling agent. The assemblies of AgPRs, whose edge lengths and thicknesses are typically 78 and 4 nm, respectively, have been surrounded by a PPy coating of 6 nm. AgPRs are assembled in a side-to-side orientation, and the degree of assembly has been controlled by varying the concentration of trisodium citrate dihydrate, which attaches selectively to the {111} facets of AgPRs. The morphology deformation time of PPy-coated AgPRs in 0.6 mM H2O2(aq) is seven times longer than that of PPy-free AgPRs, suggesting that PPy coating prevents the sharp tips of AgPRs from being truncated by oxidizing agents. The SERS effect of highly self-assembled and PPy-coated AgPRs becomes as high as 6.3 due to numerous hot spots generated between nanoprisms. Overall, our fabricated AgPRs assemblies with PPy coating have not only improved structural stability but also enhanced optical properties, extending the practical use of noble-metal nanoprisms for various optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aherne D, Charles DE, Brennan-Fournet ME, Kelly JM, Gun’ko YK (2009) Etching-resistant silver nanoprisms by epitaxial deposition of a protecting layer of gold at the edges. Langmuir 25:10165–10173. doi:10.1021/la9009493

    Article  Google Scholar 

  • Bae Y, Kim NH, Kim M, Lee KY, Han SW (2008) Anisotropic assembly of Ag nanoprisms. J Am Chem Soc 130:5432–5433. doi:10.1021/ja800898v

    Article  Google Scholar 

  • Baranov D, Manna L, Kanaras AG (2011) Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. J Mater Chem 21:16694–16703. doi:10.1039/C1JM11599E

    Article  Google Scholar 

  • Bjorklund RB (1987) Kinetics of pyrrole polymerization in aqueous iron chloride solution. J Chem Soc Faraday Trans 83:1507–1514. doi:10.1039/F19878301507

    Article  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145. doi:10.1039/B910517D

    Article  Google Scholar 

  • Chen AH, Kamata K, Nakagawa M, Iyoda T, Wang HQ, Li XY (2005) Formation process of silver—polypyrrole coaxial nanocables synthesized by redox reaction between AgNO3 and pyrrole in the presence of poly(vinylpyrrolidone). J Phys Chem B 109:18283–18288. doi:10.1021/jp053247x

    Article  Google Scholar 

  • Fava D, Nie Z, Winnik MA, Kumacheva E (2008) Evolution of self-assembled structures of polymer-terminated gold nanorods in selective solvents. Adv Mater 20:4318–4322. doi:10.1002/adma.200702786

    Article  Google Scholar 

  • Fujii S, Aichi A, Akamatsu K, Nawafune H, Nakamura Y (2007) One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier. J Mater Chem 17:3777–3779. doi:10.1039/B709413B

    Article  Google Scholar 

  • Geng X, Leng W, Carter NA, Vikesland PJ, Grove TZ (2016) Protein-aided formation of triangular silver nanoprisms with enhanced SERS performance. J Mater Chem B 4:4182–4190. doi:10.1039/C6TB00844E

    Article  Google Scholar 

  • Hatab NA, Hsueh C-H, Gaddis AL, Retterer ST, Li J-H, Eres G, Zhang Z, Gu B (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett 10:4952–4955. doi:10.1021/nl102963g

    Article  Google Scholar 

  • Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121. doi:10.1021/jp982731f

    Article  Google Scholar 

  • Janafi NR, Wangl ZL, Sau TK (2000) Seed-mediated growth method to prepare cubic copper nanoparticles. Curr Sci 79:1367–1369

    Google Scholar 

  • Jia H, Bai X, Zheng L (2012) One-step synthesis and assembly of gold nanochains using the Langmuir monolayer of long-chain ionic liquids and their applications to SERS. CrystEngComm 14:2920–2925. doi:10.1039/C2CE06375A

    Article  Google Scholar 

  • Kim J-Y, Lee J-S (2010) Synthesis and thermodynamically controlled anisotropic assembly of DNA−silver nanoprism conjugates for diagnostic applications. Chem Mater 22:6684–6691. doi:10.1021/cm102984m

    Article  Google Scholar 

  • Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657. doi:10.1038/nphoton.2009.187

    Article  Google Scholar 

  • Lee J, Jang D-J (2016) Highly efficient catalytic performances of eco-friendly grown silver nanoshells. J Phys Chem C 120:4130–4138. doi:10.1021/acs.jpcc.5b12550

    Article  Google Scholar 

  • Liang X, Wen Z, Liu Y, Wang X, Zhang H, Wu M, Huang L (2011) Preparation and characterization of sulfur–polypyrrole composites with controlled morphology as high capacity cathode for lithium batteries. Solid State Ionics 192:347–350. doi:10.1016/j.ssi.2010.07.016

    Article  Google Scholar 

  • Lin M, Guo C, Li J, Zhou D, Liu K, Zhang X, Xu T, Zhang H, Wang L, Yang B (2014) Polypyrrole-coated chainlike gold nanoparticle architectures with the 808 nm photothermal transduction efficiency up to 70%. ACS Appl Mater Interfaces 6:5860–5868. doi:10.1021/am500715f

    Article  Google Scholar 

  • Liu L, Kelly TL (2013) Phase transfer of triangular silver nanoprisms from aqueous to organic solvent by an amide coupling reaction. Langmuir 29:7052–7060. doi:10.1021/la4005856

    Article  Google Scholar 

  • Liu X, Li L, Yang Y, Yin Y, Gao C (2014) One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 6:4513–4516. doi:10.1039/C4NR00254G

    Article  Google Scholar 

  • Mahmoud MA (2013) Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle Plasmonic fields. Langmuir 29:6253–6261. doi:10.1021/la400845z

    Article  Google Scholar 

  • Mallik K, Mandal M, Pradhan N, Pal T (2001) Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of “core−shell” type structures. Nano Lett 1:319–322. doi:10.1021/nl0100264

    Article  Google Scholar 

  • Mao S, Lu G, Yu K, Bo Z, Chen J (2010) Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv Mater 22:3521–3526. doi:10.1002/adma.201000520

    Article  Google Scholar 

  • Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M (2007) Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat Mater 6:609–614. doi:10.1038/nmat1954

    Article  Google Scholar 

  • Nie Z, Fava D, Rubinstein M, Kumacheva E (2008) “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: effect of pom-pom structure on the association modes. J Am Chem Soc 130:3683–3689. doi:10.1021/ja711150k

    Article  Google Scholar 

  • Ren Y, Wang J, Huang X, Ding J (2015) The synthesis of polypyrrole@Mn3O4/reduced graphene oxide anode with improved coulombic efficiency. Electrochim Acta 186:345–352. doi:10.1016/j.electacta.2015.10.188

    Article  Google Scholar 

  • Roca M, Pandya NH, Nath S, Haes AJ (2009) Linear assembly of gold nanoparticle clusters via centrifugation. Langmuir 26:2035–2041. doi:10.1021/la902572m

    Article  Google Scholar 

  • Rosen DA, Tao AR (2014) Modeling the optical properties of bowtie antenna generated by self-assembled Ag triangular nanoprisms. ACS Appl Mater Interfaces 6:4134–4142. doi:10.1021/am4057612

    Article  Google Scholar 

  • Son M, Jeong S, Jang D-J (2014) Laser-induced nanowelding of linearly assembled and silica-coated gold Nanorods to fabricate Au@SiO2 core–shell nanowires. J Phys Chem C 118:5961–5967. doi:10.1021/jp412632n

    Article  Google Scholar 

  • Stavytska-Barba M, Salvador M, Kulkarni A, Ginger DS, Kelley AM (2011) Plasmonic enhancement of Raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms. J Phys Chem C 115:20788–20794. doi:10.1021/jp206853u

    Article  Google Scholar 

  • Sun J, Wang X, Liu J, Wan P, Liao Q, Wang F, Luo L, Sun X (2014a) Highly stable Ag–Au nanoplates and nanoframes for two-photon luminescence. RSC Adv 4:35263. doi:10.1039/C4RA06514J

    Article  Google Scholar 

  • Sun J, Wu H, Jin Y (2014b) Synthesis of thiolated Ag/Au bimetallic nanoclusters exhibiting an anti-galvanic reduction mechanism and composition-dependent fluorescence. Nanoscale 6:5449–5457. doi:10.1039/C4NR00445K

    Article  Google Scholar 

  • Wu J, Zhang X, Yao T, Li J, Zhang H, Yang B (2010) Improvement of the stability of colloidal gold superparticles by polypyrrole modification. Langmuir 26:8751–8755. doi:10.1021/la904504d

    Article  Google Scholar 

  • Xing S, Tan LH, Yang M, Pan M, Lv Y, Tang Q, Yang Y, Chen H (2009) Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19:3286–3291. doi:10.1039/B900993K

    Article  Google Scholar 

  • Xue C, Métraux G, Millstone J, Mirkin C (2008) Mechanistic study of phomediated triangular silver nanoprism growth. J Am Chem Soc 130:8337–8344. doi:10.1021/ja8005258

    Article  Google Scholar 

  • Xue B, Wang D, Zuo J, Kong X, Zhang Y, Liu X, Tu L, Chang Y, Li C, Wu F, Zeng Q, Zhao H, Zhao H, Zhang H (2015) Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale 7:8048–8057. doi:10.1039/C4NR06901C

    Article  Google Scholar 

  • Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y, Chen H (2010) Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Phys Chem Chem Phys 12:11850–11860. doi:10.1039/C0CP00127A

    Article  Google Scholar 

  • Zhang Q, Li N, Goebl J, Lu Z, Yin Y (2011) A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 133:18931–18939. doi:10.1021/ja2080345

    Article  Google Scholar 

  • Zhou S, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354. doi:10.1021/acssuschemeng.5b01020

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a research grant from the National Research Foundation of Korea (2015-051798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Jeon Jang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, DW., Jeong, S. & Jang, DJ. One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering. J Nanopart Res 19, 249 (2017). https://doi.org/10.1007/s11051-017-3946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3946-z

Keywords

Navigation