Skip to main content
Log in

Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have been demonstrated to produce reactive oxygen species (ROS), which play a major role in various cellular pathways, via Fenton and Haber-Weiss reaction. ROS act as a double-edged sword inside the body. At normal conditions, the generation of ROS is in balance with their elimination by scavenger systems, and they can promote cell proliferation as well as differentiation. However, at an increased level, they can cause damages to protein, lead to cellular apoptosis, and contribute to many diseases including cancer. Many recent studies proposed a variety of strategies to either suppress toxicity of ROS generation or exploit the elevated ROS levels for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamed M et al (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108

    Article  Google Scholar 

  • Ahamed M, Alhadlaq HA, Khan MAM, Akhtar MJ (2013) Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanopart Res 15:1225–1235

    Article  Google Scholar 

  • Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA (2015) Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. Chemosphere 135:278–288

    Article  Google Scholar 

  • Ahmad J, Alhadlaq HA, Siddiqui MA, Saquib Q, Al-Khedhairy AA, Musarrat J, Ahamed M (2013) Concentration dependant induction of ROS, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. Exp Toxicol 30:137–148

    Google Scholar 

  • Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed 7:845–857

    Google Scholar 

  • Alhadlaq HA, Akhtar MJ, Ahame M (2015) Zinc ferrite nanoparticle-induced cytotoxicity and oxidative stress in diffrent human cells. Cell Biosci 5:1–11

    Article  Google Scholar 

  • Aljarrah K, Mhaidat NM, Al-Akhras MAH, Aldaher AN, Albiss BA, Aledealat K, Alsheyab FM (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 10:62. doi:10.1186/1477-7819-10-62

    Article  Google Scholar 

  • Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3:2819–2843. doi:10.1039/C1NR10173K

    Article  Google Scholar 

  • Chen T-J, Jeng J-Y, Lin C-W, Wu C-Y, Chen Y-C (2006) Quercetin inhibition of ROS-dependent and -independent apoptosis in rat glioma C6 cell. Toxicology 223:113–126

    Article  Google Scholar 

  • Cochran DB, Wattamwar PP, Wydra R, Hilt JZ, Anderson KW, Eitel RE, Dziubla TD (2013) Suppressing iron oxide nano particle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials 34:9615–9622

    Article  Google Scholar 

  • Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomedicine (London, England) 5:1401–1414. doi:10.2217/nnm.10.114

    Article  Google Scholar 

  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal 22:64–75

    Article  Google Scholar 

  • Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway. Free Radic Biol Med 39:682–695

    Article  Google Scholar 

  • Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731–738

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  • Hauser AM, Anderson KW, Hilt JZ (2016a) Peptide conjugated magnetic nanoparticles for magnetically mediated energy delivery to lung cancer cells. Nanomedicine (Lond) 11(14):1769–1785

  • Hauser AM, Mitov MI, Daley EF, McGarry RC, Anderson KW, Hilt JZ (2016b) Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105:127–135

    Article  Google Scholar 

  • Hauser AK, Wydra RJ, Bhandari R, Rychahou PG, Evers BM, Anderson KW, Dziubla TD, Hilt JZ (2016c) Corrigendum to “The role of ROS generation from magnetic nanoparicles in an alternating magnetic field on cytotoxicity”. Acta Biomater 33:322–323

  • He F, Zuo L (2015) Redox roles of reactive oxygen species in cardiovascular diseases international. J Mol Sci 16:27770–27780. doi:10.3390/ijms161126059

    Article  Google Scholar 

  • Hsieh H-C, Chen C-M, Hsieh W-Y, Chen C-Y, Liu C-C, Lin F-H (2015) ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondriadependent apoptosis. J Nanopart Res 17:70–83

    Article  Google Scholar 

  • Huang G et al (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3:116–126

    Article  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  Google Scholar 

  • Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115:81–103

    Article  Google Scholar 

  • Klein S, Sommer A, Distel LVR, Neuhuber W, Kryschi C (2012) Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem Biophys Res Commun 425:393–397

    Article  Google Scholar 

  • Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10:2622–2629

    Article  Google Scholar 

  • Laurent S, Mahmoudi M (2011) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidermiol Genet 2:367–390

    Google Scholar 

  • Lee SS et al (2013) Antioxidant properties of cerium oxide nanocrystal as a function of nanocrystal diameter and surface coating. ACS Nano 7:9693–9703

    Article  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  Google Scholar 

  • Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 1–15

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251. doi:10.1016/j.addr.2008.03.014

    Article  Google Scholar 

  • Mesárosová M et al (2014) The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticle. Toxicology Lett 226:303–313

    Article  Google Scholar 

  • Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–628

    Article  Google Scholar 

  • Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1:1–58

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  Google Scholar 

  • Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224001

    Article  Google Scholar 

  • Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med Cell Longev 2011. doi:10.1155/2011/194586

  • Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Med Cell Longev 2013:1–11

    Article  Google Scholar 

  • Ramesh V et al (2012) Magnetite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem 363:225–234

    Article  Google Scholar 

  • Richard PU, Duskey JT, Stolarov S, Spulber M, Palivan CG (2015) New concepts to fight oxidative stress: nanosized three dimensional supramolecular antioxidant assemblies. Exp Opin Drug Deliv 12

  • Sadeghi L, Tanwir F, Babadi VY (2015) In vitro toxicity of iron oxide nanoparticle: oxidative damages on HepG2 cells. Exp Toxicol Pathol 67:197–203

    Article  Google Scholar 

  • Sahu NK, Gupta J, Bahadur D (2015) PEGylated FePt–Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS). Dalton Trans 44:9103–9113

    Article  Google Scholar 

  • Shen Y, Zhang Y, Zhang X, Zhou X, Teng X, Yana M, Bi H (2015) Horseradish peroxidase-immobilized magnetic mesoporous silica nanoparticles as a potential candidate to eliminate intracellular reactive oxygen species. Nanoscale 7:2941–2950

    Article  Google Scholar 

  • Siddiqui MA, Ahamed M, Ahmad J, Khan MAM, Musarrat J, Al-Khedhairy AA, Alrokayan SA (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50:641–647

    Article  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach. Nat Rev Drug Discov 8:579–591

    Article  Google Scholar 

  • Tsuda T, Horiob F, Osaw T (2000) The role of anthocyanins as an antioxidant under oxidative stress in rat. BioFactors 13:133–139

    Article  Google Scholar 

  • Wahab R et al (2013) ZnO Nanopar ticles induce oxidative stress in cloudman S91 melanoma cancer cells. J Biomed Nanotechnol 9:441–449

    Article  Google Scholar 

  • Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation. Nano Lett 4:409–413. doi:10.1021/nl035010n

    Article  Google Scholar 

  • Wattamwar PP, Mo Y, Wan R, Palli R, Zhang Q, Dziubla TD (2010) Antioxidant activity of degradable polymer poly(trolox ester) to suppress oxidative stress injury in the cells. Adv Funct Mater 20:147–154

    Article  Google Scholar 

  • Weissleder R, Hahn PF, Stark DD, Rummeny E, Saini S, Wittenberg J, Ferrucci JT (1987) MR imaging of splenic metastases: ferrite-enhanced detection in rats. AJR Am J Roentgenol 149:723–726. doi:10.2214/ajr.149.4.723

    Article  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493. doi:10.1148/radiology.175.2.2326474

    Article  Google Scholar 

  • Wenzel U, Nickel A, Kuntz S, Daniel H (2004) Ascorbic acid suppresses drug-induced apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Carcinogenesis 25:703–712

    Article  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415

    Article  Google Scholar 

  • Wydra RJ, Oliver CE, Anderson KW, Dziubla TD, Hilt JZ (2015a) Accelerated generation of free radicals by iron oxide nanoparticles in the presence of an alternating magnetic field. R Soc Chem Adv 5:18888–18893

    Google Scholar 

  • Wydra RJ, Rychahou PG, Evers BM, Anderson KW, Dziubla TD, Hilt JZ (2015b) The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity. Acta Biomater 25:284–292

    Article  Google Scholar 

  • Xia T et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2135

    Article  Google Scholar 

  • Yang WJ, Lee JH, Hong SC, Lee J, Lee J, Han D-W (2013) Difference betwen toxicities of iron oxide magnetic nanoparticles with various surface functional groups against human normal fibroblast and fibrosarcoma cells. Mater Chem Phys 6:4689–4706

    Google Scholar 

  • Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13:5554–5570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zach Hilt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, T., Hilt, J.Z. Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications. J Nanopart Res 19, 253 (2017). https://doi.org/10.1007/s11051-017-3943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3943-2

Keywords

Navigation