Skip to main content

Advertisement

Log in

Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Kesterites (CZT(S,Se)4) emerged as a favourable photovoltaic material, leading to solar cell efficiencies as high as 12.7%. The development of sustainable roll-to-roll printing processes that make use of Cu2ZnSnS4 (CZTS) nanoparticle inks requires the proper design of synthetic approaches and the understanding of the relation between process parameters and product purity. In the current paper, we developed this relationship by calculating a specific energy factor. A microwave-assisted synthetic method that operates at atmospheric pressure and makes use of eco-friendly solvents is established. Four solvents, i.e. ethylene glycol (EG), diethylene glycol (di-EG), triethylene glycol (tri-EG) and tetraethylene glycol (tet-EG) are compared and the temperature during the reaction is assessed by two different methods. In particular, two by-products have been identified, i.e. Cu2 − x S and a hexagonal phase. We show that the variation of reaction parameters such as power irradiation, type of solvent and precursor concentration influences the nanoparticles’ sizes (from 12 to 6 nm) and also the temperature-time profile of reaction which, in turn, can be related to phase purity of CZTS nanoparticles. The results suggest that the product purity scales with the specific energy factor providing a useful tool to a rational design of high-quality CZTS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In multimode setup, the intensity of microwaves (and hence, the temperature) may vary from one point of the reactor to another, depending upon arbitrary interference of microwaves.

  2. In a mono-mode cavity, a more homogenous microwave field (and hence, temperature) is achieved (standing wave), leading to energy efficiency 10 times higher than that in a multi-mode cavity.

References

  • Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image J. Biophotonics Int. http://dspace.library.uu.nl/handle/1874/204900. Accessed 12 Apr 2016

  • Ahmad R, Brandl M, Distaso M, et al (2015) A comprehensive study on the mechanism behind formation and depletion of Cu2ZnSnS4 (CZTS) phases. CrystEngComm. doi: 10.1039/C5CE00661A

  • Ahmad R, Distaso M, Azimi H et al (2013) Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. J Nanopart Res 15:1–16. doi:10.1007/s11051-013-1886-9

    Article  Google Scholar 

  • Azimi H, Hou Y, Brabec CJ (2014) Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ Sci 7:1829–1849. doi:10.1039/C3EE43865A

    Article  Google Scholar 

  • Baryshev SV, Thimsen E (2015) Enthalpy of formation for Cu–Zn–Sn–S (CZTS) calculated from surface binding energies experimentally measured by ion sputtering. Chem Mater 27:2294–2298. doi:10.1021/cm504749d

    Article  Google Scholar 

  • Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nano 2:1358–1374. doi:10.1039/B9NR00377K

    Google Scholar 

  • Brandl M, Ahmad R, Distaso M et al (2015) In-situ X-ray diffraction analysis of the recrystallization process in Cu2ZnSnS4 nanoparticles synthesised by hot-injection. Thin Solid Films 582:269–271. doi:10.1016/j.tsf.2014.10.077

    Article  Google Scholar 

  • Carrete A, Shavel A, Fontané X et al (2013) Antimony-based ligand exchange to promote crystallization in spray-deposited Cu2ZnSnSe4 solar cells. J Am Chem Soc 135:15982–15985. doi:10.1021/ja4068639

    Article  Google Scholar 

  • Chen S, Tao H, Shen Y et al (2014) Facile synthesis of single crystalline sub-micron Cu2ZnSnS4 (CZTS) powders using solvothermal treatment. RSC Adv 5:6682–6686. doi:10.1039/C4RA12815J

    Article  Google Scholar 

  • Choi HW, Zhou T, Singh M, Jabbour GE (2015) Recent developments and directions in printed nanomaterials. Nano 7:3338–3355. doi:10.1039/C4NR03915G

    Google Scholar 

  • Cui H, Feng Y, Ren W et al (2009) Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol 3:32–41

    Article  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b

    Article  Google Scholar 

  • Delbos (2012) Kësterite thin films for photovoltaics: a review. EPJ Photovolt 3:13. doi:10.1051/epjpv/2012008

    Article  Google Scholar 

  • Dimitrievska M, Fairbrother A, Fontané X, Jawhari T, Izquierdo-Roca V, Saucedo E, Pérez-Rodríguez A (2014) Multiwavelength excitation Raman scattering study of polycrystalline kesterite Cu2ZnSnS4 thin films. Appl Phys Lett 104(2):021901

  • Distaso M, Mačković M, Spiecker E, Peukert W (2012a) Early stages of oriented attachment: formation of twin ZnO nanorods under microwave irradiation. Chem Eur J 18:13265–13268. doi:10.1002/chem.201201646

    Article  Google Scholar 

  • Distaso M, Mačković M, Spiecker E, Peukert W (2014) Formation and dissolution of twin ZnO nanostructures promoted by water and control over their emitting properties. Chem Eur J 20:8199–8209. doi:10.1002/chem.201400100

    Article  Google Scholar 

  • Distaso M, Segets D, Wernet R et al (2012b) Tuning the size and the optical properties of ZnO mesocrystals synthesized under solvothermal conditions. Nano 4:864–873. doi:10.1039/C1NR11226K

    Google Scholar 

  • Dudley GB, Richert R, Stiegman AE (2015) On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem Sci 6:2144–2152. doi:10.1039/C4SC03372H

    Article  Google Scholar 

  • Fernandes PA, Salomé PMP, da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloys Compd 509(28):7600–7606

  • Flynn B, Wang W, Chang C, Herman GS (2012) Microwave assisted synthesis of Cu2ZnSnS4 colloidal nanoparticle inks. Phys Status Solidi A 209:2186–2194. doi:10.1002/pssa.201127734

    Article  Google Scholar 

  • Gerbec JA, Magana D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. J Am Chem Soc 127:15791–15800. doi:10.1021/ja052463g

    Article  Google Scholar 

  • Ghorpade U, Suryawanshi M, Shin SW et al (2014) Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review. Chem Commun 50:11258–11273. doi:10.1039/C4CC03176H

    Article  Google Scholar 

  • He Y, Lu H-T, Sai L-M et al (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core−shell nanocrystals with high photoluminescence. J Phys Chem B 110:13370–13374. doi:10.1021/jp057498h

    Article  Google Scholar 

  • Hermes W, Waldmann D, Agari M et al (2015) Emerging thin-film photovoltaic technologies. Chem Ing Tech 87:376–389. doi:10.1002/cite.201400101

    Article  Google Scholar 

  • Just J, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T (2011) Determination of secondary phases in kesterite Cu2ZnSnS4 thin films by x-ray absorption near edge structure analysis. Appl Phys Lett 99(26):262105

  • Kim J, Hiroi H, Todorov TK et al (2014) High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter. Adv Mater 26:7427–7431. doi:10.1002/adma.201402373

    Article  Google Scholar 

  • Knutson TR, Hanson PJ, Aydil ES, Penn RL (2014) Synthesis of Cu2ZnSnS4 thin films directly onto conductive substrates via selective thermolysis using microwave energy. Chem Commun 50:5902–5904. doi:10.1039/C3CC49207A

    Article  Google Scholar 

  • Lin Y-H, Das S, Yang C-Y et al (2015) Phase-controlled synthesis of Cu2ZnSnS4 powders via the microwave-assisted solvothermal route. J Alloys Compd 632:354–360. doi:10.1016/j.jallcom.2015.01.254

    Article  Google Scholar 

  • Martini T, Chubilleau C, Poncelet O et al (2016) Spray and inkjet fabrication of Cu2ZnSnS4 thin films using nanoparticles derived from a continuous-flow microwave-assisted synthesis. Sol Energy Mater Sol Cells 144:657–663. doi:10.1016/j.solmat.2015.09.046

    Article  Google Scholar 

  • Morschhäuser R, Krull M, Kayser C et al (2012) Microwave-assisted continuous flow synthesis on industrial scale 1:281–290

    Google Scholar 

  • Pein A, Baghbanzadeh M, Rath T et al (2011) Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses. Inorg Chem 50:193–200. doi:10.1021/ic101651p

    Article  Google Scholar 

  • Saravana Kumar R, Hong C-H, Kim M-D (2014) Doughnut-shaped hierarchical Cu2ZnSnS4 microparticles synthesized by cyclic microwave irradiation. Adv Powder Technol 25:1554–1559. doi:10.1016/j.apt.2014.05.005

    Article  Google Scholar 

  • Shin SW, Han JH, Park CY et al (2012) Quaternary Cu2ZnSnS4 nanocrystals: facile and low cost synthesis by microwave-assisted solution method. J Alloys Compd 516:96–101. doi:10.1016/j.jallcom.2011.11.143

    Article  Google Scholar 

  • Siebentritt S (2013) Why are kesterite solar cells not 20% efficient? Thin Solid Films 535:1–4. doi:10.1016/j.tsf.2012.12.089

    Article  Google Scholar 

  • Sun C, Gardner JS, Long G et al (2010) Controlled stoichiometry for quaternary CuInxGa1−xS2 chalcopyrite nanoparticles from single-source precursors via microwave irradiation. Chem Mater 22:2699–2701. doi:10.1021/cm100456t

    Article  Google Scholar 

  • Kharissova OV, Kharisov BI, Méndez UO (2011) Microwave-assisted synthesis of coordination and organometallic compounds. In: Grundas S (ed) Advances in induction and microwave heating of mineral and organic materials. InTech. doi:10.5772/13149

  • Vaccarello D, Liu L, Zhou J, Sham T-K, Ding Z (2015) Photoelectrochemical andphysical insight into Cu ZnSnS nanocrystals using synchrotron radiation. J Phys Chem C 119(21):11922–11928

  • van Embden J, Chesman ASR, Jasieniak JJ (2015) The heat-up synthesis of colloidal nanocrystals. Chem Mater 27:2246–2285. doi:10.1021/cm5028964

    Article  Google Scholar 

  • Wang K-C, Chen P, Tseng C-M (2013) Facile one-pot synthesis of Cu2ZnSnS4 quaternary nanoparticles using a microwave-assisted method. CrystEngComm 15:9863–9868. doi:10.1039/C3CE41691G

    Article  Google Scholar 

  • Wu C-C, Shiau C-Y, Ayele DW et al (2010) Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. Chem Mater 22:4185–4190. doi:10.1021/cm1006263

    Article  Google Scholar 

  • Yan X, Hu X, Komarneni S (2015) Solvothermal synthesis of CZTS nanoparticles in ethanol: preparation and characterization. J Korean Phys Soc 66:1511–1515. doi:10.3938/jkps.66.1511

    Article  Google Scholar 

  • Zhao Y, Tao W, Chen X et al (2015a) Synthesis and characterization of Cu2ZnSnS4 nanocrystals prepared by microwave irradiation method. J Mater Sci Mater Electron 26:5645–5652. doi:10.1007/s10854-015-3114-0

    Article  Google Scholar 

  • Zhao Y, Tao W, Liu J, Wei A (2015b) Rapid synthesis of Cu2ZnSnS4 nanocrystalline thin films directly on transparent conductive glass substrates by microwave irradiation. Mater Lett 148:63–66. doi:10.1016/j.matlet.2015.02.068

    Article  Google Scholar 

  • Zhou H, Hsu W-C, Duan H-S et al (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6:2822–2838. doi:10.1039/C3EE41627E

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through the Cluster of Excellence “Engineering of Advanced Material” initiative at the “Friedrich Alexander University of Erlangen-Nuremberg”. The authors also thank Dipl. – Ing. Andreas Güldenpfennig for the fruitful discussion and Dipl. Ing. Paula Hoppe for the assistance in ICP-OES analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Distaso.

Additional file

Additional file 1

The Supporting Information file contains the following additional data: experimental details on the synthesis and temperature assessment; EDX analysis in graphical form; Scanning and Transmission Electron Microscopy analysis and an example of the calculation of the specific energy factor F (DOCX 6440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Nicholson, K.S., Nawaz, Q. et al. Correlation between product purity and process parameters for the synthesis of Cu2ZnSnS4 nanoparticles using microwave irradiation. J Nanopart Res 19, 238 (2017). https://doi.org/10.1007/s11051-017-3932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3932-5

Keywords

Navigation