Skip to main content
Log in

Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO3 concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag+ ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  • Boughen L, Liggat J, Ellis G (2010) Thermal degradation of polyethylene glycol 6000 and its effect on the assay of macroprolactin. Clin Biochem 43(9):750–753

    Article  Google Scholar 

  • Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger JR, Vialle JL, Broyer M (2006) Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor Chem Accounts 116(4–5):514–523

    Article  Google Scholar 

  • Cruje C, Chithrani DB (2014) Polyethylene glycol density and length affects nanoparticle uptake by cancer cells. Journal of Nanomedicine Research 1(1):1–6

  • Fievet F, Lagier JP, Figlarz M (1989) Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process. MRS Bull, 14(12):29. doi:10.1557/S0883769400060930

  • Glastrup J (1996) Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: tetraethylene glycol. Polym Degrad Stab 52(3):217–222

    Article  Google Scholar 

  • Gomes JF, Garcia AC, Ferreira EB, Pires C, Oliveira VL, Tremiliosi-Filho G, Gasparotto LHS (2015) New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents. Phys Chem Chem Phys 17:21683–21693

    Article  Google Scholar 

  • Han S, Kim C, Kwon D (1995) Thermal degradation of poly(ethyleneglycol). Polym Degrad Stab 47:203–208

    Article  Google Scholar 

  • Han S, Kim C, Kwon D (1997) Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 38(2):317–323

    Article  Google Scholar 

  • Jeong L, Park WH (2014) Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int J Mol Sci 15:6857–6879

    Article  Google Scholar 

  • Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50:1980–1994

    Article  Google Scholar 

  • Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with different shapes. Arab J Chem. doi:10.1016/j.arabjc.2014.12.014

  • Li W, Guo Y, Zhang P (2010) SERS-active silver nanoparticles prepared by a simple and green method. J Phys Chem C 114:6413–6417

    Article  Google Scholar 

  • Liz-Marzan LM, Lado-Tourino I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12(15):3585–3589

    Article  Google Scholar 

  • Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288(2):444–448

    Article  Google Scholar 

  • Nam S, Parikh DV, Condon BD, Zhao Q, Yoshioka-Tarver M (2011) Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution. J Nanopart Res 13(9):3755–3764

    Article  Google Scholar 

  • Polte J 2015 Fundamental growth principles of colloidal metal nanoparticles—a new perspective. CrystEngComm 17: 6809

  • Popa M, Pradell T, Crespo D, Calderon-Moreno JM (2007) Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids Surf A Physicochem Eng Aspects 303(3):184–190

    Article  Google Scholar 

  • Saion E, Gharibshahi E, Naghavi K (2013) Size-controlled and optical properties of monodispersed silver nanoparticles synthesized by the radiolytic reduction method. Int J Mol Sci 14(4):7880–7896

    Article  Google Scholar 

  • Shi Q, Vitchuli N, Nowak J, Noar J, Caldwell JM, Breidt F, Bourham M, McCord M, Zhang X (2011) One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J Mater Chem 21:10330

    Article  Google Scholar 

  • Shkilnyy A, Souce M, Dubois P, Warmont F, Saboungi ML, Chourpa I (2009) Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Analyst 134(9):1868–1872

    Article  Google Scholar 

  • Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu AG, Braescu C, Leopold N (2013) SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett 8(1):47. doi:10.1186/1556-276X-8-47

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  Google Scholar 

  • Wang JQ, He LN, Miao CX, Gao J (2009) The free-radical chemistry of polyethylene glycol: organic reactions in compressed carbon dioxide. ChemSusChem 2(8):755–760

    Article  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    Article  Google Scholar 

  • Zielinska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry 1:1560–1566

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Riera.

Ethics declarations

Funding

This study was funded by PROMEP (Programa de Mejoramiento del Profesorado) (Grant DSA/103.5/15/7356) and CONACyT (Consejo Nacional de Ciencia y Tecnología (Mexico)). The access to facilities at Universidad de Sonora, the TEM laboratories at IPICYT, and at Tucson University is greatly appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 137 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleitas-Salazar, N., Silva-Campa, E., Pedroso-Santana, S. et al. Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism. J Nanopart Res 19, 113 (2017). https://doi.org/10.1007/s11051-017-3780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-017-3780-3

Keywords

Navigation