Skip to main content
Log in

Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recently, increasing interest is spent on the synthesis of superparamagnetic iron oxide nanoparticles, followed by their characterization and evaluation of cytotoxicity towards tumorigenic cell lines. In this work, magnetite (Fe3O4) nanoparticles were synthesized by the polyol method and coated with polyethylene glycol (PEG) and glutathione (GSH), leading to the formation of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles. The nanoparticles were characterized by state-of-the-art techniques: dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and superconducting quantum interference device (SQUID) magnetic measurements. PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles have crystallite sizes of 10 and 5 nm, respectively, indicating compression in crystalline lattice upon addition of GSH on the nanoparticle surface. Both nanoparticles presented superparamagnetic behavior at room temperature, and AFM images revealed the regular spherical shape of the nanomaterials and the absence of particle aggregation. The average hydrodynamic sizes of PEG-Fe3O4 and GSH-PEG-Fe3O4 nanoparticles were 69 ± 37 and 124 nm ± 75 nm, respectively. The cytotoxicity of both nanoparticles was screened towards human prostatic carcinoma cells (PC-3). The results demonstrated a decrease in PC-3 viability upon treatment with PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles in a concentration-dependent manner. However, the cytotoxicity was not time-dependent. Due to the superparamagnetic behavior of PEG-Fe3O4 or GSH-PEG-Fe3O4 nanoparticles, upon the application of an external magnetic field, those nanoparticles can be guided to the target site yielding local toxic effects to tumor cells with minimal side effects to normal tissues, highlighting the promising uses of iron oxide nanoparticles in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aadinath W, Ghosh T, Anandharamakrishnan C (2016) Multimodal magnetic nano-carriers for cancer treatment: challenges and advancements. J Magn Magn Mater 401:1159–1172. doi:10.1016/j.jmmm.2015.10.123

    Article  Google Scholar 

  • Abbas M, Parvatheeswara Rao B, Nazrul Islam M, Naga SM, Takahashi M, Kim C (2014) Highly stable- silica encapsulating magnetite nanoparticles (Fe3O4/SiO2) synthesized using single surfactantless-polyol process. Ceram Int 40:1379–1385. doi:10.1016/j.ceramint.2013.07.019

    Article  Google Scholar 

  • Ballot N, Schoenstein F, Mercone S, Chauveau T, Brinza O, Jouini N (2012) Reduction under hydrogen of ferrite MFe2O4 (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: a novel route to elaborate CoFe2, Fe and Ni3Fe nanoparticles. J Alloys Compd 536:S381–S385. doi:10.1016/j.jallcom.2012.01.019

    Article  Google Scholar 

  • Benelmekki M, Xuriguera E, Caparros C, Rodríguez-Carmona E, Mendoza R, Corchero JL, Lanceros-Mendez S, Martinez LM (2012) Design and characterization of Ni2+ and Co2+ decorated porous magnetic silica spheres synthesized by hydrothermal-assisted modified-Stöber method for His-tagged proteins separation. J Colloid Interface Sci 365:156–162. doi:10.1016/j.jcis.2011.09.051

    Article  Google Scholar 

  • Conte C, Costabile G, d’Angelo I, Pannico M, Musto P, Grassia G, Ialenti A, Tirino P, Miro A, Ungaro F, Quaglia F (2015) Skin transport of PEGylated poly(ε-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-β-cyclodextrin. J Colloid Interface Sci 454:112–120. doi:10.1016/j.jcis.2015.05.010

    Article  Google Scholar 

  • de Lima R, Oliveira JL, Murakami PSK, Molina MM, Itri R, Haddad PS, Seabra AB (2013a) Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes: a promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications. J Phys Conf Ser 429:012021. doi:10.1088/1742-6596/429/1/012034

    Article  Google Scholar 

  • de Lima R, de Oliveira JL, Ludescher A, Molina MM, Itri R, Seabra AB, Haddad PS (2013b) Nitric oxide releasing iron oxide magnetic nanoparticles for biomedical applications: cell viability, apoptosis and cell death evaluations. J Phys Conf Ser 429:012034. doi:10.1088/1742-6596/429/1/012034

    Article  Google Scholar 

  • Dorniani D, Kura AU, Bin Hussein MZ, Fakurazi S, Shaari AH, Ahmad Z (2014) Controlled-release formulation of perindopril erbumine loaded PEG-coated magnetite nanoparticles for biomedical applications. J Mater Sci 49:8487–8497. doi:10.1007/s10853-014-8559-7

    Article  Google Scholar 

  • Dwivedi S, Siddiqui MA, Farshori NN, Ahamed M, Musarrat J, Al-Khedhairy AA (2014) Synthesis, characterization and toxicological evaluation of iron oxide nanoparticles in human lung alveolar epithelial cells. Colloids Surf B 122:209–215. doi:10.1016/j.colsurfb.2014.06.064

    Article  Google Scholar 

  • Escamilla-Rivera V, Uribe-Ramírez M, González-Pozos S, Lozano O, Lucas S, De Vizcaya-Ruiz A (2016) Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages. Toxicol Lett 240:172–184. doi:10.1016/j.toxlet.2015.10.018

    Article  Google Scholar 

  • Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A Physicochem Eng Asp 328:52–59. doi:10.1016/j.colsurfa.2008.06.024

    Article  Google Scholar 

  • Ferreira RV, Silva-Caldeira PP, Pereira-Maia EC, Fabris JD, Cavalcante LCD, Ardisson JD, Domingues RZ (2016) Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles. J Nanopart Res 18:92. doi:10.1007/s11051-016-3400-7

    Article  Google Scholar 

  • Feuser PE, Jacques AV, Arévalo JMC, Rocha MEM, Santos-Silva MC, Sayer C, de Araújo PHH (2016) Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis. J Nanopart Res 18:104. doi:10.1007/s11051-016-3406-1

    Article  Google Scholar 

  • Fudimura KA, Seabra AB, Santos MDC, Haddad PS (2016) Synthesis and characterization of methylene blue-containing silica-coated magnetic nanoparticles for photodynamic therapy. J Nanosci Nanotechnol 6:1–10. doi:10.1166/jnn.2016.12715

    Article  Google Scholar 

  • Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NTBDK (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287. doi:10.1039/C5NR03867G

    Article  Google Scholar 

  • Haddad PS, Duarte EL, Baptista MS, Goya GF, Leite CAP, Itri R (2004) Synthesis and characterization of silica-coated magnetic nanoparticles. Progr Colloid Polym Sci 128:232–238. doi:10.1007/b97092

    Google Scholar 

  • Haddad PS, Martins TM, D’Souza-Li L, Li LM, Metze K, Adam RL, Knobel M, Zanchet D (2008) Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications. Mater Sci Eng C 28:489–494. doi:10.1016/j.msec.2007.04.014

    Article  Google Scholar 

  • Haddad PS, Rocha TR, Souza EA, Martins TM, Knobel M, Zanchet D (2009) Interplay between crystallization and particle growth during the isothermal annealing of colloidal iron oxide nanoparticles. J Colloid Interface Sci 339:344–350. doi:10.1016/j.jcis.2009.07.068

    Article  Google Scholar 

  • Haddad PS, Seabra AB (2012) Biomedical applications of magnetic nanoparticles. AI Martinez. Iron oxides: structure, properties and applications. Nova Science Publishers 165–188.

  • Haddad PS, Britos TN, Li LM, Li LDS (2015a) Preparation, characterization and tests of incorporation in stem cells of superparamagnetic iron oxide. J Phys Conf Ser 617:012002. doi:10.1088/1742-6596/617/1/012002

    Article  Google Scholar 

  • Haddad PS, Britos TN, Santos MC, Seabra AB, Palladino MV, Justo GZ (2015b) Synthesis, characterization and cytotoxicity evaluation of nitric oxide-iron oxide magnetic nanoparticles. J Phys Conf Ser 617:012022. doi:10.1088/1742-6596/617/1/012022

    Article  Google Scholar 

  • Han Y, Lei S-I, Lu J-H, He Y, Chen Z-W, Ren L, Zhou X (2016) Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C 64:199–207. doi:10.1016/j.msec.2016.03.090

    Article  Google Scholar 

  • Honarmand D, Ghoreishi SM, Habibi N, Nicknejad ET (2016) Controlled release of protein from magnetite-chitosan nanoparticles exposed to an alternating magnetic field. J Appl Polym Sci 133:43335. doi:10.1002/app.43335

    Article  Google Scholar 

  • Hsieh HC, Chen CM, Hsieh WY, Chen CY, Liu CC, Lin FH (2015) ROS-induced toxicity: exposure of 3T3, RAW264.7, and MCF7 cells to superparamagnetic iron oxide nanoparticles results in cell death by mitochondria-dependent apoptosis. J Nanopart Res 17:1–14. doi:10.1007/s11051-015-2886-8

    Article  Google Scholar 

  • Hussein-Al-Ali SH, Zowalaty El ME, Hussein MZ, Geilich BM, Webster TJ (2014a) Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine 9:3801–3814. doi:10.2147/IJN.S61143

    Article  Google Scholar 

  • Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Hussein MZ, Dorniani D (2014b) Arginine-chitosan- and arginine-polyethylene glycol-conjugated superparamagnetic nanoparticles: preparation, cytotoxicity and controlled-release. J Biomater Appl 29:186–198. doi:10.1177/0885328213519691

    Article  Google Scholar 

  • Iwamoto T, Kinoshita T, Takahashi K (2016) Growth mechanism and magnetic properties of magnetite nanoparticles during solution process. J Solid State Chem 237:19–26. doi:10.1016/j.jssc.2016.01.010

    Article  Google Scholar 

  • Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496:191–218. doi:10.1016/j.ijpharm.2015.10.058

    Article  Google Scholar 

  • Karakoti AS, Das S, Thevuthasan S, Seal S (2011) PEGylated inorganic nanoparticles. Angew Chem 50:1980–1994. doi:10.1002/anie.201002969

    Article  Google Scholar 

  • Kharisov BI, Dias HVR, Kharissova OV, Vázquez A (2014) Ultrasmall particles in the catalysis. J Nanopart Res 6:2665. doi:10.1007/s11051-014-2665-y

    Article  Google Scholar 

  • Klug P, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York

    Google Scholar 

  • Kumar R, Inbaraj BS, Chen BH (2010) Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material. Mater Res Bull 45:1603–1607. doi:10.1016/j.materresbull.2010.07.017

    Article  Google Scholar 

  • Kummar S, Gutierrez M, Doroshow JH, Murgo AJ (2006) Drug development in oncology: classical cytotoxics and molecularly targeted agents. Br J Clin Pharmacol 62:15–26. doi:10.1111/j.1365-2125.2006.02713.x

    Article  Google Scholar 

  • LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. doi:10.1021/ja01167a001

    Article  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  • Lee Y-J, Park J-M, Huh J-Y, Kim M-S, Lee J-S, Palani A, Lee K-Y, Lee S-W (2010) Ultra-specific enrichment of GST-tagged protein by GSH-modified nanoparticles. Bull Kor Chem Soc 31:1568–1572. doi:10.5012/bkcs.2010.31.6.1568

    Article  Google Scholar 

  • Lei W, Min W, Hui D, Yun L, An X (2015) Effect of surface modification on cellular internalization of Fe3O4 nanoparticles in strong static magnetic field. J Nanosci Nanotechnol 15:5184–5192

    Article  Google Scholar 

  • Li L, Leung CW, Pong PWT (2013) Magnetism of iron oxide nanoparticles and magnetic biodetection. J Nanoelectron Opto 8:397–414. doi:10.1166/jno.2013.1504

    Article  Google Scholar 

  • Liu C, Guo J, Yang W, Hu J, Wang C, Fu S (2009) Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. J Mater Chem 19:4764–4770. doi:10.1039/B902985K

    Article  Google Scholar 

  • Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X (2011) Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv Funct Mater 21:1498–1504. doi:10.1002/adfm.201001658

    Article  Google Scholar 

  • Liu Y, Goebl J, Yin Y (2013) Templated synthesis of nanostructured materials. Chem Soc Rev 42:2610–2653. doi:10.1039/C2CS35369E

    Article  Google Scholar 

  • Liu CL, Peng YK, Chou SW, Tseng WH, Tseng YJ, Chen HC, Hsiao JK, Chou PT (2014) One-step, room-temperature synthesis of glutathione-capped iron-oxide nanoparticles and their application in in vivo T1-weighted magnetic resonance imaging. Small 10:3962–3969. doi:10.1002/smll.201303868

    Article  Google Scholar 

  • Long NV, Yang Y, Minh Thi C, Cao Y, Nogami M (2014) Ultra-high stability and durability of iron oxide micro- and nano-structures with discovery of new three-dimensional structural formation of grain and boundary. Colloids Surf A Physicochem Eng Asp 456:184–194. doi:10.1016/j.colsurfa.2014.05.001

    Article  Google Scholar 

  • Macková H, Horák D, Donchenko GV (2015) Colloidally stable surface-modified iron oxide nanoparticles: preparation, characterization and anti-tumor activity. J Magn Magn Mater 380:125–131. doi:10.1016/j.jmmm.2014.09.037

    Article  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B 75:300–309. doi:10.1016/j.colsurfb.2009.08.044

    Article  Google Scholar 

  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432. doi:10.1021/cr1003166

    Article  Google Scholar 

  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338. doi:10.1021/cr2002596

    Article  Google Scholar 

  • Mei Z, Dhanale A, Gangaharan A, Sardar DK, Tang L (2016) Water dispersion of magnetic nanoparticles with selective biofunctionality for enhanced plasmonic biosensing. Talanta 151:23–29. doi:10.1016/j.talanta.2016.01.007

    Article  Google Scholar 

  • Mindrila I, Buteica SA, Mihaiescu DE, Badea G, Fudulu A, Margaritescu DN (2016) Fe3O4/salicylic acid nanoparticles versatility in magnetic mediated vascular nanoblockage. J Nanopart Res 18:10. doi:10.1007/s11051-015-3318-5

    Article  Google Scholar 

  • Mirshafiee V, Kim R, Park S, Mahmoudi M, Kraft ML (2016) Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75:295–304. doi:10.1016/j.biomaterials.2015.10.019

    Article  Google Scholar 

  • Molina MM, Seabra AB, de Oliveira MG, Itri R, Haddad PS (2013) Nitric oxide donor superparamagnetic iron oxide nanoparticles. Mater Sci Eng C 33:746–751. doi:10.1016/j.msec.2012.10.027

    Article  Google Scholar 

  • Nesztor D, Bali K, Tóth IY, Szekeres M, Tombácz E (2015) Controlled clustering of carboxylated SPIONs through polyethylenimine. J Magn Magn Mater 380:144–149. doi:10.1016/j.jmmm.2014.10.091

    Article  Google Scholar 

  • Pan Y, Long MJC, Li X, Shi J, Hedstrom L, Xu B (2011) Glutathione (GSH)-decorated magnetic nanoparticles for binding glutathione-S-transferase (GST) fusion protein and manipulating live cells. Chem Sci 2:945–948. doi:10.1039/C1SC00030F

    Article  Google Scholar 

  • Pang YL, Lim S, Ong HC, Chong WT (2016) Synthesis, characteristics and sonocatalytic activities of calcined γ-Fe2O3 and TiO2 nanotubes/γ-Fe2O3 magnetic catalysts in the degradation of Orange G. Ultrason Sonochem 29:317–327. doi:10.1016/j.ultsonch.2015.10.003

    Article  Google Scholar 

  • Parnaud G, Corpet DE, Gamet Payrastre L (2001) Cytostatic effect of polyethylene glycol on human colonic adenocarcinoma cells. Int J Cancer 92:63–69. doi:10.1002/1097-0215(200102)9999:9999<::AID-IJC1158>3.0.CO;2-8

    Article  Google Scholar 

  • Pilloni M, Nicolas J, Marsaud V, Bouchemal K, Frongia F, Scano A, Ennas G, Dubernet C (2010) PEGylation and preliminary biocompatibility evaluation of magnetite–silica nanocomposites obtained by high energy ball milling. Int J Pharm 401:103–112. doi:10.1016/j.ijpharm.2010.09.010

    Article  Google Scholar 

  • Rezvani Alanagh H, Khosroshahi ME, Tajabadi M, Keshvari H (2014) The effect of pH and magnetic field on the fluorescence spectra of fluorescein isothiocyanate conjugated SPION- dendrimer nanocomposites. J Supercond Nov Magn 27:2337–2345. doi:10.1007/s10948-014-2598-9

    Article  Google Scholar 

  • Santos MC, Seabra AB, Pelegrino MT, Haddad PS (2016) Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery. Appl Surf Sci 367:26–35. doi:10.1016/j.apsusc.2016.01.039

    Article  Google Scholar 

  • Seabra AB, Durán N (2010) Nitric oxide-releasing vehicles for biomedical applications. J Mater Chem 20:1624–1637. doi:10.1039/B912493B

    Article  Google Scholar 

  • Seabra AB, Haddad PS, Durán N (2013) Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotechnol 7:90–99. doi:10.1049/iet-nbt.2012.0047

    Article  Google Scholar 

  • Seabra AB, Pasquôto T, Ferrarini ACF, Santos MDC, Haddad PS, de Lima R (2014) Preparation, characterization, cytotoxicity, and genotoxicity evaluations of thiolated- and S-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem Res Toxicol 27:1207–1218. doi:10.1021/tx500113u

    Article  Google Scholar 

  • Seabra AB, Durán N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5:934–975. doi:10.3390/met5020934

    Article  Google Scholar 

  • Tajabadi M, Khosroshahi ME, Bonakdar S (2013) An efficient method of SPION synthesis coated with third generation PAMAM dendrimer. Colloids Surf A Physicochem Eng Asp 431:18–26. doi:10.1016/j.colsurfa.2013.04.003

    Article  Google Scholar 

  • Taratula O, Dani RK, Schumann C, Xu H, Wang A, Song H, Dhagat P, Taratula O (2013) Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm 458:169–180

    Article  Google Scholar 

  • Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, Bardania H (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501:331–341. doi:10.1016/j.ijpharm.2016.02.012

    Article  Google Scholar 

  • Theerdhala S, Bahadur D, Vitta S, Perkas N, Zhong Z, Gedanken A (2010) Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason Sonochem 17:730–737. doi:10.1016/j.ultsonch.2009.12.007

    Article  Google Scholar 

  • Wang J, Wan J, Chen K (2010) Facile synthesis of superparamagnetic Fe-doped ZnO nanoparticles in liquid polyols. Mater Lett 64:2373–2375. doi:10.1016/j.matlet.2010.07.062

    Article  Google Scholar 

  • Wang S, Yang W, Du H, Guo F, Wang H, Chang J, Gong X, Zhang B (2016) Multifunctional reduction-responsive SPIO&DOX-loaded PEGylated polymeric lipid vesicles for magnetic resonance imaging-guided drug delivery. Nanotechnology 27:165101. doi:10.1088/0957-4484/27/16/165101

    Article  Google Scholar 

  • Xie S, Zhang B, Wang L, Wang J, Li X, Yang G, Gao F (2015) Superparamagnetic iron oxide nanoparticles coated with different polymers and their MRI contrast effects in the mouse brains. Appl Surf Sci 326:32–38. doi:10.1016/j.apsusc.2014.11.099

    Article  Google Scholar 

  • Xiong F, Chen Y, Chen J, Yang B, Zhang Y, Gao H, Hua Z, Gu N (2013) Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. J Control Release 172:993–1001. doi:10.1016/j.jconrel.2013.09.023

    Article  Google Scholar 

  • Yang G, Zhang B, Wang J, Xie S, Li X (2015) Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles. J Magn Magn Mater 374:205–208. doi:10.1016/j.jmmm.2014.08.040

    Article  Google Scholar 

  • Zhao L, Duan L (2010) Uniform Fe3O4 Octahedra with tunable edge length—synthesis by a facile polyol route and magnetic properties. Eur J Inorg Chem 2010:5635–5639. doi:10.1002/ejic.201000580

    Article  Google Scholar 

  • Zeng H, Rice PM, Wang SX, Sun SH (2004) Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J Am Chem Soc 126:11458–11459. doi:10.1021/ja045911d

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of FAPESP (Proc. 2014/13913-7, Proc. 2016/10347-6). The authors wish to thank Dr. Fanny Nascimento Costa (UFABC) for magnetic measurements and Daniel Razzo (UNICAMP) for technical assistance with FE-TEM measurements. The authors thank the Brazilian Nanotechnology National Laboratory/Center for Research in Energy and Materials (LNNano/CNPEM) for technical support and AFM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedea B. Seabra.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, P.S., Santos, M.C., de Guzzi Cassago, C.A. et al. Synthesis, characterization, and cytotoxicity of glutathione-PEG-iron oxide magnetic nanoparticles. J Nanopart Res 18, 369 (2016). https://doi.org/10.1007/s11051-016-3680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3680-y

Keywords

Navigation