Skip to main content
Log in

An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu3+ MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30–60 nm. A red luminescent emission with high intensity was observed for all the procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldabergenova SB, Osvet A, Frank G, Strunk HP, Taylor PC, Andreev AA (2002) Blue, green and red emission from Ce3+, Tb3+ and Eu3+ ions in amorphous GaN and AlN thin films. J Non Cryst Solids 299–302(Part 1):709–713. doi:10.1016/S0022-3093(01)01211-X

    Article  Google Scholar 

  • Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352. doi:10.1039/B802352M

    Article  Google Scholar 

  • Buijs M, Meyerink A, Blasse G (1987) Energy transfer between Eu3+ ions in a lattice with two different crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3. J Lumin 37:9–20. doi:10.1016/0022-2313(87)90177-3

    Article  Google Scholar 

  • Bünzli J-CG (1987) The europium(III) ion as spectroscopic probe in bioinorganic chemistry. Inorg Chim Acta 139:219–222

    Article  Google Scholar 

  • Bünzli J-C, Eliseeva S (2011) Basics of lanthanide photophysics. In: Hänninen P, Härmä H (eds) Lanthanide luminescence, vol 7., Springer Series on FluorescenceSpringer, Berlin, pp 1–45. doi:10.1007/4243_2010_3

    Chapter  Google Scholar 

  • Cavalcante LS et al (2007) Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films. Acta Mater 55:6416–6426. doi:10.1016/j.actamat.2007.07.049

    Article  Google Scholar 

  • Cui Y, Yue Y, Qian G, Chen B (2012) Luminescent functional metal-organic frameworks. Chem Rev 112:1126–1162. doi:10.1021/cr200101d

    Article  Google Scholar 

  • D’Vries RF, Snejko N, Iglesias M, Gutiérrez-Puebla E, Monge M (2014) Ln-MOF pseudo-merohedral twinned crystalline family as solvent-free heterogeneous catalysts. Cryst Growth Des 14:2516–2521. doi:10.1021/cg5002336

    Article  Google Scholar 

  • De la Rosa-Cruz E et al (2003) Luminescent properties and energy transfer in ZrO2:Sm3+ nanocrystals. J Appl Phys 94:3509–3515. doi:10.1063/1.1599960

    Article  Google Scholar 

  • Dereń PJ, Mahiou R, Goldner P (2009) Multiphonon transitions in LaAlO3 doped with rare earth ions. Opt Mater 31:465–469. doi:10.1016/j.optmat.2007.10.016

    Article  Google Scholar 

  • Görller-Walrand C, Fluyt L, Ceulemans A, Carnall WT (1991) Magnetic dipole transitions as standards for Judd–Ofelt parameterization in lanthanide spectra. J Chem Phys 95:3099–3106

    Article  Google Scholar 

  • Hao Z et al (2013) One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. J Mater Chem A 1:11043–11050. doi:10.1039/C3TA12270K

    Article  Google Scholar 

  • Hesterberg TW, Yang X, Holliday BJ (2010) Polymerizable cationic iridium(III) complexes exhibiting color tunable light emission and their corresponding conducting metallopolymers. Polyhedron 29:110–115. doi:10.1016/j.poly.2009.06.014

    Article  Google Scholar 

  • Hu Z, Deibert BJ, Li J (2014) Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem Soc Rev 43:5815–5840. doi:10.1039/C4CS00010B

    Article  Google Scholar 

  • Ibarra IA, Hesterberg TW, Holliday BJ, Lynch VM, Humphrey SM (2012) Gas sorption and luminescence properties of a terbium(iii)-phosphine oxide coordination material with two-dimensional pore topology. Dalton Trans 41:8003–8009. doi:10.1039/C2DT30138E

    Article  Google Scholar 

  • Jin G, Liu Z, Sun H, Tian Z (2016) Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF. Luminescence 31:190–194

    Article  Google Scholar 

  • Jørgensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transitions in lanthanides. Mol Phys 8:281–290

    Article  Google Scholar 

  • Judd DB, MacAdam DL, Wyszecki G, Budde HW, Condit HR, Henderson ST, Simonds JL (1964) Spectral distribution of typical daylight as a function of correlated color temperature. J Opt Soc Am 54:1031–1040

    Article  Google Scholar 

  • Kwok HL (1997) Electronic materials. PWS Publishing Company, Boston

    Google Scholar 

  • Lin J-D, Jia C-C, Li Z-H, Du S-W (2009) Syntheses, topological analyses and magnetic properties of two 3D supramolecular nickel-organic frameworks constructed from 1,3,5-benzenetricarboxylate and flexible imidazole-based ligands. Inorg Chem Commun 12:558–562. doi:10.1016/j.inoche.2009.04.020

    Article  Google Scholar 

  • Liu H, Wang L, Chen S, Zou B (2007a) Effect of concentration on the luminescence of Eu3+ ions in nanocrystalline La2O3. J Lumin 126:459–463. doi:10.1016/j.jlumin.2006.09.001

    Article  Google Scholar 

  • Liu J, Fei X, Yu X, Tao Z, Yang L, Yang S (2007b) Highly enhanced ff transitions of Eu3+ in La2O3 phosphor via citric acid and poly (ethylene glycol) precursor route. J Non Cryst Solids 353:4697–4701. doi:10.1016/j.jnoncrysol.2007.06.065

    Article  Google Scholar 

  • Liu GX, Chen H, Zhu K et al (2008) A novel 3D europium (III) coordination polymer constructed from 3,5-pyridinedicarboxylate acid: synthesis, crystal structure and emission spectrum. J Inorg Organomet Polym 18:457. doi:10.1007/s10904-008-9222-z

    Article  Google Scholar 

  • Liu K et al (2009a) Coordination-induced formation of one-dimensional nanostructures of europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9:3519–3524. doi:10.1021/cg900252r

    Article  Google Scholar 

  • Liu K et al (2009b) Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. CrystEngComm 11:2622–2628. doi:10.1039/B905924P

    Article  Google Scholar 

  • Loera-Serna S et al (2012) Electrochemical behavior of [Cu3(BTC)2] metal–organic framework: the effect of the method of synthesis. J Alloy Compd 540:113–120. doi:10.1016/j.jallcom.2012.06.030

    Article  Google Scholar 

  • Loera-Serna S, Nunez LL, Flores J, Lopez-Simeon R, Beltran HI (2013) An alkaline one-pot metathesis reaction to give a [Cu3(BTC)2] MOF at r.t., with free Cu coordination sites and enhanced hydrogen uptake properties. RSC Adv 3:10962–10972. doi:10.1039/C3RA40726H

    Article  Google Scholar 

  • Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50:11717–11720. doi:10.1039/C4CC05363J

    Article  Google Scholar 

  • Matthes PR, Schönfeld F, Zottnick SH, Müller-Buschbaum K (2015) Post-synthetic shaping of porosity and crystal structure of Ln-Bipy-MOFs by thermal treatment. Molecules 20:12125–12153. doi:10.3390/molecules200712125

    Article  Google Scholar 

  • Medina DY, Orozco S, Hernandez I, Hernandez RT, Falcony C (2011) Characterization of europium doped lanthanum oxide films prepared by spray pyrolysis. J Non Cryst Solids 357:3740–3743. doi:10.1016/j.jnoncrysol.2011.07.021

    Article  Google Scholar 

  • Mirochnik AG, Petrochenkova NV, Zhikhareva PA (2014) White-light-emitting Eu(III)-bi-doped macromolecular complexes. Opt Spectrosc 116:377–378. doi:10.1134/S0030400X14030138

    Article  Google Scholar 

  • Morales RamÍrez ÁdJ, Sarabia Dominguez F, Medina Velazquez DY, Jaramillo Vigueras D, GarcÍa Hernández M, Dorantes Rosales HJ (2014) Synthesis and photoluminescent properties of Y2O3:Eu3+ thin films prepared from F127-containing solution. J Ceram Soc Jpn 122:701–707. doi:10.2109/jcersj2.122.701

    Article  Google Scholar 

  • Park J, Lim M, Kim C, Park H, Han C-H, Choi S (2003) Luminescence properties of LaOX (X = F, Cl, Br): Eu phosphors. J Mater Sci Lett 22:477–478. doi:10.1023/A:1022936401386

    Article  Google Scholar 

  • Qu Y, Ke Y, Lu S, Fan R, Pan G, Li J (2005) Hydrothermal synthesis, structures and spectroscopy of 2D lanthanide coordination polymers built from helical chains: [Ln2(BDC)3(H2O)2]n (Ln = Sm, 1; Ln = Eu, 2; BDC = 1,3-benzenedicarboxylate). J Mol Struct 734:7–13. doi:10.1016/j.molstruc.2004.03.035

    Article  Google Scholar 

  • Ren Y-W et al (2011) 1,4-phenylenediacetate-based Ln MOFs—synthesis, structures, luminescence, and catalytic activity. Eur J Inorg Chem 2011:4369–4376. doi:10.1002/ejic.201100523

    Article  Google Scholar 

  • Rocha J, Carlos LD, Paz FAA, Ananias D (2011) Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem Soc Rev 40:926–940. doi:10.1039/C0CS00130A

    Article  Google Scholar 

  • Shi F-N, Ananias D, Yang T-H, Rocha J (2013) Synthesis and characterization of polymorphs of photoluminescent Eu(III)-(2,5-furandicarboxylic acid, oxalic acid) MOFs. J Solid State Chem 204:321–328. doi:10.1016/j.jssc.2013.05.034

    Article  Google Scholar 

  • Singh LR, Ningthoujam RS, Sudarsan V, Iti S, Singh SD, Dey GK, Kulshreshtha SK (2008) Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core–shell formation effects. Nanotechnology 19:055201

    Article  Google Scholar 

  • Song X-Z, Song S-Y, Zhang H-J (2015) Luminescent lanthanide metal-organic frameworks. In: Cheng P (ed) Lanthanide metal-organic frameworks, vol 163., Structure and BondingSpringer, Berlin, pp 109–144. doi:10.1007/430_2014_160

    Google Scholar 

  • Stanley JM, Holliday BJ (2012) Luminescent lanthanide-containing metallopolymers. Coord Chem Rev 256:1520–1530. doi:10.1016/j.ccr.2012.03.046

    Article  Google Scholar 

  • Su J, Zhang QL, Shao SF, Liu WP, Wan SM, Yin ST (2009) Phase transition, structure and luminescence of Eu:YAG nanophosphors by co-precipitation method. J Alloy Compd 470:306–310. doi:10.1016/j.jallcom.2008.02.045

    Article  Google Scholar 

  • Trung TK et al (2008) Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al, Cr). J Am Chem Soc 130:16926–16932. doi:10.1021/ja8039579

    Article  Google Scholar 

  • Vicentini G, Zinner LB, Zukerman-Schpector J, Zinner K (2000) Luminescence and structure of europium compounds. Coord Chem Rev 196:353–382. doi:10.1016/S0010-8545(99)00220-9

    Article  Google Scholar 

  • Volanti DP, Rosa ILV, Paris EC, Paskocimas CA, Pizani PS, Varela JA, Longo E (2009) The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt Mater 31:995–999. doi:10.1016/j.optmat.2008.11.006

    Article  Google Scholar 

  • Wang Y, Zuo R, Zhang C, Zhang J, Zhang T (2015) Low-temperature-fired ReVO4 (Re = La, Ce) microwave dielectric ceramics. J Am Ceram Soc 98:1–4. doi:10.1111/jace.13378

    Article  Google Scholar 

  • Weng YH, Cheng JK, Feng YL, Zhang J, Li ZJ, Yao YG (2005) Synthesis and crystal structure of [La(BTC)(H2O)6]n. Chin J Struct Chem 12:1440–1444

    Google Scholar 

  • Xu B, Guo H, Wang S, Li Y, Zhang H, Liu C (2012) Solvothermal synthesis of luminescent Eu(BTC)(H2O)DMF hierarchical architecture. CrystEngComm 14:2914–2919

    Article  Google Scholar 

  • Yang W, Feng J, Zhang H (2012) Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J Mater Chem 22:6819–6823. doi:10.1039/C2JM16344F

    Article  Google Scholar 

  • Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via sol–gel Soft lithography. Chem Mater 14:2224–2231. doi:10.1021/cm011663y

    Article  Google Scholar 

  • Yu Y, Ma J-P, Dong Y-B (2012) Luminescent humidity sensors based on porous Ln3+-MOFs. CrystEngComm 14:7157–7160. doi:10.1039/C2CE26210J

    Article  Google Scholar 

  • Zhang D-F, Tang A, Yang L, Zhu Z-T (2012a) Potential red-emitting phosphor GdNbO4:Eu3+, Bi3+ for near-UV white light emitting diodes. Int J Miner Metall Mater 19:1036–1039. doi:10.1007/s12613-012-0666-3

    Article  Google Scholar 

  • Zhang QF, Hu FL, Wang SN, Sun DZ, Wang DQ, Dou JM (2012b) DMF/H2O volume-ratio-controlled assembly of 2D and 3D Ln-MOFs with 5-(pyridin-4-yl)isophthalic acid ligand. Aust J Chem 65:524–530. doi:10.1071/CH12072

    Article  Google Scholar 

  • Zhang F, Zhang W, Zhang Z, Huang Y, Tao Y (2014a) Luminescent characteristics and energy transfer of a red-emitting YVO4:Sm3+, Eu3+ phosphor. J Lumin 152:160–164. doi:10.1016/j.jlumin.2013.11.047

    Article  Google Scholar 

  • Zhang Y, Ju W, Xu X, Lv Y, Zhu D, Xu Y (2014b) Two novel mixed Eu3+/Y3+ Ln MOFs: influence of pH on the topology Eu/Y ratio and energy transfer. CrystEngComm 16:5681–5688. doi:10.1039/C4CE00513A

    Article  Google Scholar 

  • Zych E (2002) Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3. J Phys Condens Matter 14:5637

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Departamento de materiales, UAM-México project No. 2260244, IPN-México SIP20140033 CONACyT projects 254280, 154736 and 153663 for financial support. We also wish to acknowledge the technical assistance of to Dr. J. N. Díaz de León (CNyN-UNAM) cDr. J. Reyes-Miranda and Eng. Fernando Almanza Hernández (UAMAzc), and Z. Rivera, (Cinvestav-IPN), and thank Oscar Francisco Rivera Dominguez, Maribel Pacheco Ramos, Hana Lopez and Daniel Cortes for their help. Finally, the authors would like to thank Henry Jankiewicz for the editing work that he did it for this paper, and to M. García Murillo for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Medina-Velazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Velazquez, D.Y., Alejandre-Zuniga, B.Y., Loera-Serna, S. et al. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions. J Nanopart Res 18, 352 (2016). https://doi.org/10.1007/s11051-016-3593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3593-9

Keywords

Navigation