Skip to main content
Log in

Molecular tilt-dependent and tyrosine-enhanced electron transfer across ITO/SAM/[DPPC–Au NP–Tyrosine] Janus nanoparticle junction

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Enhanced interfacial electron transfer (ET) across the otherwise insulating indium tin oxide/alkanethiol self-assembled monolayer (SAM)/redox molecule junction was accomplished when a Janus gold nanoparticle (JNP) protected by bioinspired phosphatidylcholine (DPPC) lipid and tyrosine amino acid ligands was anchored on it. In addition to the most theoretical and experimental investigations on the distance-dependent ET across Metal–Organic SAM–Nanoparticle (NP) architectures, the current results succinctly illustrate molecular tilt angle of the SAM and the characteristic of JNP as key factors in expediting the ET rate via electron tunneling. In the absence of JNP, electron tunneling with a tunneling factor β = 1.1 Å−1 across the SAM was the rate-limiting step, evidenced from electrochemical impedance spectroscopy (EIS). The apparent electron transfer rate constant (k 0app ) for anchored SAM was enhanced by at least one order of magnitude than the DPPC-only protected nanoparticle, suggesting the potential role of tyrosine towards the enhanced ET. The asymmetric and biogenic nature of the construct sheds light on a potential bioelectronic device for novel electronic attributes.

Graphical abstract

Entry of TOC

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agranovich VM, Gartstein YN, Litinskaya M (2011) Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Rev 111:5179–5214

    Article  Google Scholar 

  • Barfidokht A, Ciampi S, Luais E, Darwish N, Gooding JJ (2013a) Distance-dependent electron transfer at passivated electrodes decorated by gold nanoparticles. Anal Chem 85:1073–1080

    Article  Google Scholar 

  • Barfidokht A, Ciampi S, Luais E, Darwish N, Gooding JJ (2013b) The influence of organic-film morphology on the efficient electron transfer at passivated polymer-modified electrodes to which nanoparticles are attached. ChemPhysChem 14:2190–2197

    Article  Google Scholar 

  • Berchmans S, Nirmal RG, Prabaharan G, Mishra AK, Yegnaraman V (2006) Solution phase electron transfer versus bridge mediated electron transfer across carboxylic acid terminated thiols. J Solid State Electrochem 10:439–446

    Article  Google Scholar 

  • Biji P, Patnaik A (2012) Surface-confined crown ether-capped gold nanoclusters: investigation on their electrochemical behaviour. J Nanopart Res 14:1005

    Article  Google Scholar 

  • Biji P, Sarangi NK, Patnaik A (2010) One pot hemimicellar synthesis of amphiphilic Janus gold nanoclusters for novel electronic attributes. Langmuir 26:14047–14057

    Article  Google Scholar 

  • Bradbury CR, Zhao JJ, Fermin DJ (2008) Distance-independent charge-transfer resistance at gold electrodes modified by thiol monolayers and metal nanoparticles. J Phys Chem C 112:10153–10160

    Article  Google Scholar 

  • Chazalviel JNL, Allongue P (2011) On the origin of the efficient nanoparticle mediated electron transfer across a self-assembled monolayer. J Am Chem Soc 133:762–764

    Article  Google Scholar 

  • Chen PH, Fryling MA, McCreery RL (1995) Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites. Anal Chem 67:3115–3122

    Article  Google Scholar 

  • Cuevas JC, Scheer E (2010) In ‘Molecular electronics-an introduction to theory and experiment’. World Scientific, Singapore

    Book  Google Scholar 

  • Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF, Moore AL, Moore TA, Gust D, Harris G, Lindsay SM (2001) Reproducible measurement of single-molecule conductivity. Science 294:571–574

    Article  Google Scholar 

  • Du J, O’Reilly RK (2011) Multicompartment and Janus architecture: preparation and application. Chem Soc Rev 40:2402–2416

    Article  Google Scholar 

  • Dyne J, Lin YS, Lai LMH, Ginges JZ, Luais E, Peterson JR, Goon IY, Amal R, Gooding JJ (2010) Some more observations on the unique electrochemical properties of electrode-monolayer-nanoparticle constructs. ChemPhysChem 11:2807–2813

    Article  Google Scholar 

  • Erabi T, Fujiwara A, Matsumoto K, Tanaka K, Wada M (2000) Voltammetric behavior of cytochromes c ~ 2 and c from rhodospirillumrubrum at an ITO electrode. Electrochemistry 68:859–861

    Google Scholar 

  • Evenson JW, Karplus M (1993) Effective coupling in biological electron transfer: exponential or complex distance dependence? Science 262:1247–1249

    Article  Google Scholar 

  • Foti G, Sánchez-Portal D, Arnau A, Frederiksen T (2013) Interface dipole effects as a function of molecular tilt: mechanical gating of electron tunneling through self-assembled monolayers? J Phys Chem C 117:14272–14280

    Article  Google Scholar 

  • Frederiksen T, Munuera C, Ocal C, Brandbyge M, Paulsson M, Sanchez-Portal D, Arnau A (2009) Exploring the tilt-angle dependence of electron tunneling across molecular junctions of self-assembled alkanethiols. ACS Nano 3:2073–2080

    Article  Google Scholar 

  • Frisch et al. (2010) Gaussian 09, Revision C. 01, Gaussian, Inc., Wallingford CT

  • Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG, Fox AP, Keating CD, Musick MD, Natan MJ (1996) Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir 12:2353–2361

    Article  Google Scholar 

  • Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310–314

    Article  Google Scholar 

  • Haran A, Waldeck DH, Naaman R, Moons E, Cahen D (1994) The dependence of electron transfer efficiency on the conformational order in organic monolayers. Science 263:948–950

    Article  Google Scholar 

  • Hassan M, Haque E, Reddy KR, Minett AI, Chenc J, Gomes VG (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988–11994

    Article  Google Scholar 

  • Hernández-Santos D, González-Garcia MB, Garcia AC (2002) Metal-nanoparticle based electroanalysis. Electroanalysis 14:1225–1235

    Article  Google Scholar 

  • Horswell SL, O’Neil IA, Schiffrin DJ (2003) Kinetics of electron transfer at Pt nanostructured film electrodes. J Phys Chem B 107:4844–4854

    Article  Google Scholar 

  • Hunt RD, Mitchell ML, Dluhy RA (1989) The interfacial structure of phospholipid monolayer films: an infrared reflectance study. J Mol Struct 214:93–109

    Article  Google Scholar 

  • Kamat PV (2008) Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  Google Scholar 

  • Karasz MA, Wnek GE (1998) Tunable electroluminescence from ionomers doped with cationic lumophores. Electochimica Acta 43:1623–1628

    Article  Google Scholar 

  • Karsi N, Lang P, Chehimi M, Delamar M, Horowitz G (2006) Modification of indium tin oxide films by alkanethiol and fatty acid self-assembled monolayers: a comparative study. Langmuir 22:3118–3124

    Article  Google Scholar 

  • Kissling GP, Miles DO, Fermin DJ (2011) Electrochemical charge transfer mediated by metal nanoparticles and quantum dots. Phys Chem Chem Phys 13:21175–21185

    Article  Google Scholar 

  • Kobayashi H, Ishida T, Nakamura K, Nakato Y, Tsubomura H (1992) Properties of indium tin oxide films prepared by the electron beam evaporation method in relation to characteristics of indium tin oxide/silicon oxide/silicon junction solar cells. J Appl Phys 72:5288–5293

    Article  Google Scholar 

  • Kornyshev AA, Kuznetsov AM, Ulstrup J (2006) In-situ super-exchange electron transfer through a single molecule: a rectifying effect. Proc Natl Acad Sci 103:6799–6804

    Article  Google Scholar 

  • Lattuada M, Hatton TA (2011) Synthesis, properties and applications of janus nanoparticles. Nano Today 6:286–308

    Article  Google Scholar 

  • Leroueil PR, Berry SA, Duthie K, Han G, Rotello VM, McNerny DQ, Baker JR, Orr BG, Holl MMB (2008) Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 8:420–424

    Article  Google Scholar 

  • Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F (2008) Charge transport in single Au| alkanedithiol| Au junctions: coordination geometries and conformational degrees of freedom. J Am Chem Soc 130:318–326

    Article  Google Scholar 

  • Li B, Wang M, Chen K, Cheng Z, Chen G, Zhang Z (2015) Synthesis of biofunctional Janus particles. Macromol Rapid Commun 36:1200–1204

    Article  Google Scholar 

  • Lin H-C, Polaske NW, Oquendo LE, Gliboff M, Knesting KM, Nordlund D, Ginger DS, Ratcliff EL, Beam BM, Armstrong NR, McGrath DV, Saavedra SS (2012) Electron-transfer processes in zinc phthalocyanine–phosphonic acid monolayers on ITO: characterization of orientation and charge-transfer kinetics by waveguide spectroelectrochemistry. J Phys Chem Lett 3:1154–1158

    Article  Google Scholar 

  • Liu Y-P, Newton MD (1994) Reorganization energy for electron transfer at film-modified electrode surfaces: a dielectric continuum model. J Phys Chem 98:7162–7169

    Article  Google Scholar 

  • Liu F, Khan K, Liang J-H, Yan J-W, Wu D-Y, Mao B-W, Jensen PS, Zhang J, Ulstrup J (2013) On the hopping efficiency of nanoparticles in the electron transfer across self-assembled monolayers. ChemPhysChem 14:952–957

    Article  Google Scholar 

  • Liu G, Tian J, Zhang X, Zhao H (2014) Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: synthesis and self-assembly. Chem Asian J 9:2597–2603

    Article  Google Scholar 

  • Lokan NR, Paddon-Row MN, Koeberg M, Verhoeven JW (2000) Solvent-mediated intramolecular electron transfer in u-shaped systems with different “bite sizes”. J Am Chem Soc 122:5075–5081

    Article  Google Scholar 

  • Miller C, Cuendet P, Grätzel M (1991) Adsorbed & #x03C9;-hydroxythiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J Phys Chem 95:877–886

    Article  Google Scholar 

  • Munuera C, Barrena E, Ocal C (2007) Scanning force microscopy three-dimensional modes applied to conductivity measurements through linear-chain organic SAMs. Nanotechnology 18:125505

    Article  Google Scholar 

  • Nitzan A, Ratner MA (2003) Electron transport in molecular wire junctions. Science 300:1384–1389

    Article  Google Scholar 

  • Paddon-Row MN (2003) Superexchange-mediated charge separation and charge recombination in covalently linked donor–bridge–acceptor systems. Aust J Chem 56:729–748

    Article  Google Scholar 

  • Pauly F, Viljas JK, Cuevas JC, Schön G (2008) Density-functional study of tilt-angle and temperature-dependent conductance in biphenyl dithiol single-molecule junctions. Phys Rev B 77:155312

    Article  Google Scholar 

  • Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543:127–133

    Article  Google Scholar 

  • Reddy KR, Lee K-P, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci 106:1181–1191

    Article  Google Scholar 

  • Reddy KR, Gomes VG, Hassan M (2014) Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Mat Res Express 1:015012

    Article  Google Scholar 

  • Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced Photocatalysis. App Cat A: Gen 489:1–16

    Article  Google Scholar 

  • Sánchez A, Díez P, Martínez-Ruíz P, Villalonga R, Pingarrón JM (2013) Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem Commun 30:51–54

    Article  Google Scholar 

  • Sarangi NK, Patnaik A (2012) l-tryptophan induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence. ChemPhysChem 13:4258–4270

    Article  Google Scholar 

  • Sarangi NK, Patnaik A (2014) Bio-inspired Janus gold nanoclusters with lipid and amino acid functional capping ligands: micro-voltammetry and in situ electron transfer in a biogenic environment. RSC Adv 4:29463–29473

    Article  Google Scholar 

  • Sen A, Kaun CC (2010) Effect of electrode orientations on charge transport in alkanedithiol single-molecule junctions. ACS Nano 4:6404–6408

    Article  Google Scholar 

  • Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ (2009) Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25:11121–11128

    Article  Google Scholar 

  • Shpaisman H, Seitz O, Yaffe O, Roodenko K, Scheres L, Zuilhof H, Chabal YJ, Sueyoshi T, Kera S, Ueno N, Vilan A, Cahen D (2012) Structure matters: correlating temperature dependent electrical transport through alkyl monolayers with vibrational and photoelectron spectroscopies. Chem Sci 32:851–862

    Article  Google Scholar 

  • Slowinski K, Chamberlain RV, Miller CJ, Majda M (1997) Through-bond and chain-to-chain coupling. Two pathways in electron tunneling through liquid alkanethiol monolayers on mercury electrodes. J Am Chem Soc 119:11910–11919

    Article  Google Scholar 

  • Song Y, Chen S (2014) Janus nanoparticles: preparation, characterization, and applications. Chem Asian J 9:418–430

    Article  Google Scholar 

  • Song H, Lee H, Lee T (2007) Intermolecular chain-to-chain tunneling in metal–alkanethiol–metal junctions. J Am Chem Soc 129:3806–3807

    Article  Google Scholar 

  • Suci PA, Kang S, Young M, Douglas T (2009) A streptavidin—protein cage Janus particle for polarized targeting and modular functionalization. J Am Chem Soc 131:9164–9165

    Article  Google Scholar 

  • Ueno N, Sugita K, Seki K, Inokuchi H (1986) Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes. Phys Rev B 34:6386–6393

    Article  Google Scholar 

  • Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer LH (2006) Variability of conductance in molecular junctions. J Phys Chem B 110:2462–2466

    Article  Google Scholar 

  • Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113:5194–5261

    Article  Google Scholar 

  • Weiss EA, Sinks LE, Lukas AS, Chernick ET, Ratner MA, Wasielewski MR (2004) Influence of energetics and electronic coupling on through-bond and through-space electron transfer within u-shaped donor-bridge-acceptor arrays. J Phys Chem B 108:10309–10316

    Article  Google Scholar 

  • Willner I, Willner B (2002) Functional nanoparticles architectures for sensoric, optoelectronic and bioelectronic applications. Pure Appl Chem 74:1773–1783

    Article  Google Scholar 

  • Zawisza I, Wittstock G, Oukherroub R, Szunerits S (2008) Polarization modulation infrared reflection absorption spectroscopy investigations of thin silica films deposited on gold. 2. Structural analysis of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. Langmuir 24:3922–3923

    Article  Google Scholar 

  • Zhang LZ, Wesley K, Jiang SY (2001) Molecular simulation study of alkyl monolayers on Si(111). Langmuir 17:6275–6281

    Article  Google Scholar 

  • Zhao J, Bradbury CR, Fermin DJ (2008) Long-range electronic communication between metal nanoparticles and electrode surfaces separated by polyelectrolyte multilayer films. J Phys Chem C 112:6832–6841

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, New Delhi, India for the financial support (Grant No. SR/S2/CMP-57/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archita Patnaik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2016_3563_MOESM1_ESM.docx

Supplementary material 1 (DOCX 1681 kb) Supplementary data associated with this article can be found, in the online version

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, N.K., Patnaik, A. Molecular tilt-dependent and tyrosine-enhanced electron transfer across ITO/SAM/[DPPC–Au NP–Tyrosine] Janus nanoparticle junction. J Nanopart Res 18, 265 (2016). https://doi.org/10.1007/s11051-016-3563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3563-2

Keywords

Navigation