Skip to main content
Log in

Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abulateefeh SR, Spain SG, Thurecht KJ, Aylott JW, Chan WC, Garnett MC, Alexander C (2011) Thermoresponsive polymer colloids for drug delivery and cancer therapy. Macromol Biosci 1:1722–1734. doi:10.1002/mabi.201100252

    Article  Google Scholar 

  • Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144. doi:10.1186/1556-276X-7-144

    Article  Google Scholar 

  • Andhariya N, Upadhyay R, Mehta R, Chudasama B (2013) Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin. J Nanopart Res 15:1416. doi:10.1007/s11051-013-1416-9

    Article  Google Scholar 

  • Arosio P, Orsini F, Piras AN, Sandreschi S, Chiellini F, Corti M, Masa M, Múčková M, Schmidtová L, Ravagli C, Baldi G, Nicolato E, Conti G, Marzola P, Lascialfari A (2015) MR imaging and targeting of human breast cancer cells with folate decorated nanoparticles. RSC Adv 5:39760–39770. doi:10.1039/C5RA04880J

    Article  Google Scholar 

  • Asua JM (2014) Mapping the morphology of polymer-inorganic nanocomposites synthesized by miniemulsion polymerization. Macromol Chem Phys 215:458–464. doi:10.1002/macp.201300696

    Article  Google Scholar 

  • Bettencourt A, Almeida AJ (2010) Poly(methyl methacrylate) particulate carriers in drug delivery. J. Microencap. 29(4):353–367. doi:10.3109/02652048.2011.651500

    Article  Google Scholar 

  • Chandrasekharana P, Maity D, Yong CX, Chuangc KH, Ding J, Feng SS (2011) Vitamin E (D-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32(24):5663–5672. doi:10.1016/j.biomaterials.2011.04.037

    Article  Google Scholar 

  • Chen D, Tang Q, Li X, Zhou X, Zang J, Xue W-Q, Xiang J-Y, Guo C-Q (2012a) Biocompatibility of magnetic Fe3 O4 nanoparticles and their cytotoxic effect on MCF-7 cells. J Nanomed 7:4973–4985. doi:10.2147/IJN.S35140

    Article  Google Scholar 

  • Chen ML, He YJ, Chen XW, Wang JH (2012b) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476. doi:10.1021/la303957y

    Article  Google Scholar 

  • Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Eu-Leong Y, Xu HE, Karsten M (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500:486–489. doi:10.1038/nature12327

    Article  Google Scholar 

  • Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for mri monitored magnetic targeting of brain tumors. Biomaterials 29:487–496. doi:10.1016/j.biomaterials.2007.08.050

    Article  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:S25–S30. doi:10.2144/000112517

    Article  Google Scholar 

  • Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148. doi:10.3762/bjoc.6.130

    Article  Google Scholar 

  • Dong S, Cho HJ, Lee WY, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567. doi:10.1021/bm401593n

    Article  Google Scholar 

  • Dorniani D, Hussein MZB, Kura AU, Fakurazi S, Shaari AH, Zalinah A (2012) Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomed 7:5745–5756. doi:10.2147/IJN.S35746

    Article  Google Scholar 

  • Duan J, Liu M, Zhang Y, Zhao J, Pan Y, Yang X (2012) Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery. J Nanopart Res 14:761–770

    Article  Google Scholar 

  • Fan L-H, Luo Y-L, Chen Y-S, Zhang C-H, Wei Q-B (2009) Preparation and characterization of Fe3O4 magnetic composite microspheres covered by a P(MAH-co-MAA) copolymer. J Nanopart Res 11:449–458. doi:10.1007/s11051-008-9556-z

    Article  Google Scholar 

  • Feuser PE, Bubniak LS, Santos-Silva MC, Cas Viegas A, Castilho-Fernandes A, Nele M, Ricci-Júnior E, Tedesco AC, Sayer C, Araújo PHH (2015a) Encapsulation of magnetic nanoparticles in poly(methyl methacrylate) by miniemulsion and evaluation of hyperthemia in U87MG cells. Europ J Polym 68:355–365. doi:10.1016/j.eurpolymj.2015.04.029

    Article  Google Scholar 

  • Feuser PE, Fernades AC, Nele M, Cas Viegas A, Tedesco AC, Ricci-Júnior E, Sayer C, de Araújo PHH (2015b) Simultaneous encapsulation of magnetic nanoparticles and zinc phthalocyanine in poly(methyl methacrylate) nanoparticles by miniemulsion polymerization and in vitro studies. Colloid Surf B 135:357–364. doi:10.1016/j.colsurfb.2015.07.067

    Article  Google Scholar 

  • Feuser PE, Gaspar PC, Jacques AV, Tedesco AC, Santos-Silva MC, Ricci-Júnior E, Sayer C, Araújo PHH (2016) Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells. Mater Eng C 60:458–466. doi:10.1016/j.msec.2015.11.063

    Article  Google Scholar 

  • García-Díaz M, Nonell S, Villanueva A, Stockert JC, Cañete M, Casadó M, Mora M, Sagristá ML (2011) Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity? Biochim Biophys Acta 1808:1063–1071. doi:10.1016/j.bbamem.2010.12.014

    Article  Google Scholar 

  • Gosavi SS, Gosavi Y, Alla RK (2010) Local and Systemic Effects of Unpolymerised Monomers. Dent Res J (Isfahan) 7(2):82–87

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 25:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  • He L, Li Z, Fu J, Deng Y, He N, Wang Z, Wang H, Shi Z, Wang Z (2009) Preparation of SiO2/(PMMA/Fe3O4) from monolayer linolenic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Biomed Nanotechnol 5(5):596–601. doi:10.1166/jbn.2009.1065

    Article  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666. doi:10.1016/j.biomaterials.2010.01.065

    Article  Google Scholar 

  • Higuchi WI, Misra J (1962) Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof. J Pharm Sci 51:459. doi:10.1002/jps.2600510514

    Article  Google Scholar 

  • International standard: Biological Evaluation of Medical Devices–Part 5 (1992) Tests for Cytotoxicity: in vitro methods. ISO 10993-5

  • Kam NWS, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605. doi:10.1073/pnas.0502680102

    Article  Google Scholar 

  • Kumar CSSR, Mohamad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug reléase. Adv Drug Deliv Rev 63(9):789–808. doi:10.1039/c3ra47542e

    Article  Google Scholar 

  • Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Ang Chem 48:4488–4507. doi:10.1002/anie.200900723

    Article  Google Scholar 

  • Landfester K, Mailander V (2013) Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin Drug Deliv 10:593–609. doi:10.1517/17425247.2013.772976

    Article  Google Scholar 

  • Landfester K, Ramires LP (2003) Encapsulated magnetite particles for biomedical application J Phys Condes Matter 15:1345–1361. doi:10.1088/0953-8984/15/15/304

    Article  Google Scholar 

  • Leamon CP, Low PS (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci 88(13):5572–5576

    Article  Google Scholar 

  • Lee SJ, Shim Y-H, Oh JS, Jeong Y-I, Park IK, Lee HC (2015) Folic-acid-conjugated pullulan/poly(dl-lactide-co-glycolide) graft copolymer nanoparticles for folate-receptor-mediated drug delivery. Nanoscale Res Letters 10:43. doi:10.1186/s11671-014-0706-1

    Article  Google Scholar 

  • Mahdavian AR, Ashjari M, Mobarakeh HS (2008) Nanocomposite particles with core-shell morphology. I. preparation and characterization of Fe3O4–Poly(butyl acrylate-styrene) particles via miniemulsion polymerization. J Appl Polym Sci 21:1242–1249. doi:10.1002/app.28729

    Article  Google Scholar 

  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2014) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392. doi:10.1007/s13204-013-0216-y

    Article  Google Scholar 

  • Mohapatra S, Mallick SK, Kmaiti T, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:385102. doi:10.1088/0957-4484/18/38/385102

    Article  Google Scholar 

  • Moriyama Y, Narita M, Sato K, Urushiyama M, Koyama S, Hirosawa H, Kishi K, Takahashi M, Takai K, Shibata A (1986) Application of hyperthermia to the treatment of human acute leukemia: purging human leukemic progenitor cells by heat. Blood 67(3):802–804

    Google Scholar 

  • Moulin M, Dumontet C, Arrigo A-P (2007) Sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis by hyperthermia. Cancer Lett 250(1):117–127. doi:10.1016/j.canlet.2006.10.019

    Article  Google Scholar 

  • Nan A, Leistner J, Turcu R (2013) Magnetite–polylactic acid nanoparticles by surface initiated organocatalysis ring opening polymerization. J Nanopart Res 15:1869

    Article  Google Scholar 

  • Pan Y-J, Li D, Jin S, Wei C, Wu QY, Guo J, Wang CC (2013) Folate-conjugated poly(N-(2-hydroxypropyl)-methacrylamide-co-methacrylic acid) nanohydrogels with pH/redox dual-stimuli response for controlled drug release. 4:3545, doi: 10.1039/c3py00249g

  • Pengcheng D, Huiying Y, Jin Z, Peng L (2013) Folic acid-conjugated temperature and pH dual-responsive yolk/shell microspheres as a drug delivery system. J Mater Chem B 1:5298. doi:10.1039/c3tb20975

    Article  Google Scholar 

  • Qi H, Ratnam M (2006) Synergistic induction of folate receptor B by all-trans retinoic acid and histone deacetylase inhibitors in acute myelogenous leukemia cells: mechanism and utility in enhancing selective growth inhibition by antifolates. Cancer Res 66:5875–5882. doi:10.1158/0008-5472.CAN-05-4048

    Article  Google Scholar 

  • Qiu G, Wang Q, Wang C, Lau W (2007) Polystyrene/Fe3O4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrason Sonochem 14:55–61. doi:10.1016/j.ultsonch.2006.03.001

    Article  Google Scholar 

  • Rastogi V, Yadav P, Bhattacharya SS, Mishra AK, Verma N, Verma A, Pandit JK (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv doi:10.1155/2014/670815

  • Romio AP, Rodrigues HH, Peres A, Viegas ADC, Kobitskaya E, Ziener U, Landfester K, Sayer C, Araújo PHH (2013) Encapsulation of magnetic nickel nanoparticles via inverse miniemulsion polymerization. J Appl Polym Sci 129:1426–1433. doi:10.1002/app.38840

    Article  Google Scholar 

  • Sahoo B, Sanjana K, Devi P, Banerjee R, Maiti TK, Pramanik P, Dhara D (2013) Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfac 5:3884–3893. doi:10.1021/am400572b

    Article  Google Scholar 

  • Saltan N, Kutlu HM, Hür D, Izcan A, Ridvan S (2011) Interaction of cancer cells with magnetic nanoparticles modified by methacrylamido-folic acid. Int J Nanomed 6:477–484. doi:10.2147/IJN.S16803

    Google Scholar 

  • Simioni AR, Primo FL, Rodrigues MMA, Lacava ZGM, Morais PC, Tedesco AC (2007) Binding and photophysical studies of biocompatible magnetic fluid in biological medium and development of magnetic nanoemulsion: a new candidate for cancer treatment. IEE Trans Magn 43(6):2459–2461. doi:10.1109/TMAG.2007.894126

    Article  Google Scholar 

  • Sudimack JBA, Lee RJ (2000) Targeted drug delivery via the folate receptor. Ad Drug Deliv Rev 41:147–162. doi:10.1016/S0169-409X(99)00062-9

    Article  Google Scholar 

  • Van der Heijden JW, Oerlemans R, Dijkmans BAC, Qi H, Van der Laken CJ, Lems WF, Jackman AL, Kraan MC, Tak PP, Ratnam M, Jansen G (2009) Folate receptor as a potential delivery route for novel folate antagonists to macrophages in the synovial tissue of rheumatoid arthritis patients. Arthritis Rheum 60:12–21. doi:10.1002/art.24219

    Article  Google Scholar 

  • Wang JJ, Liu K, Sung K, Tsai C, Fang JY (2009) Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur J Pharm Sci 38(2):138–146. doi:10.1016/j.ejps.2009.06.008

    Article  Google Scholar 

  • Wibowo SA, Singh M, Reeder KM, Carter JJ, Kovach AR, Menga W, Ratnam M, Zhang F III, Dann CE (2013) Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proc Natl Acad Sci USA 110(38):15180–15188. doi:10.1073/pnas.1308827110

    Article  Google Scholar 

  • Xu C, Su S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743. doi:10.1016/j.addr.2012.10.008

    Article  Google Scholar 

  • Yan F, Li J, Zhang J, Liu F, Yang W (2011) Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Nanopart Res 11:289–296. doi:10.1007/s11051-008-9382-3

    Article  Google Scholar 

  • Yang H, Li Y, Li T, Xu M, Chen Y, Wu C, Dang X, Liu Y (2014a) Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci Rep 4:7072. doi:10.1038/srep07072

    Article  Google Scholar 

  • Yang Y, Guo X, Wei K, Wang L, Yang D, Lai L, Cheng M, Liu Q (2014b) Synthesis and drug-loading properties of folic acid-modified superparamagnetic Fe3O4 hollow microsphere core/mesoporous SiO2 shell composite particles. J Nanop Res 16(2210):1–10. doi:10.1007/s11051-013-2210-4

    Article  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728. doi:10.1021/nn2013904

    Article  Google Scholar 

  • Zhang JL, Srivastava RS, Misra RDK (2007) Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir 23(11):6342–6351. doi:10.1021/la0636199

    Article  Google Scholar 

  • Zhang J, Jiaxin L, Razavi FS, Mumin AM (2011) One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core–shell nanoparticles. J Nanopart Res 13:1909–1916. doi:10.1007/s11051-010-9942-1

    Article  Google Scholar 

  • Zhao DL, Zhang HL, Zeng XW, Xia QS, Tang JT (2013) Inductive heat property of Fe3O4/polymer composite nanoparticles in an AC magnetic field for localized hyperthermia. Biomed Mater 1:198–201. doi:10.1088/1748-6041/1/4/004

    Article  Google Scholar 

  • Zheng W, Gao F, Gu H (2005) Magnetic polymer nanospheres with high and uniform magnetite content. J Magn Magn Mater 288:403–410. doi:10.1016/j.jmmm.2004.09.125

    Article  Google Scholar 

  • Zheng N, YinL Song Z, Ma L, Tang H, Gabrielson NP, Lu H, Cheng J (2014) Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials 35:1302–1314. doi:10.1016/j.biomaterials.2013.09.090

    Article  Google Scholar 

  • Zhou Q, Zhang Z, Chen T, Guo X, Xhou S (2011) Preparation and characterization of thermosensitive pluronic F127-b-poly(caprolactone) mixed micelles. Colloid Surf B 86(1):45–47. doi:10.1016/j.colsurfb.2011.03.013

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Laboratório Central de Microscopia Eletrônica da UFSC (LCME-UFSC) and Laboratório Multiusuário de Caracterização Magnética de Materiais (LMCMM-UFSC) for TEM images and magnetization measurements. We are also grateful to Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior, CAPES, and Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H. Hermes de Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feuser, P.E., Jacques, A.V., Arévalo, J.M.C. et al. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis. J Nanopart Res 18, 104 (2016). https://doi.org/10.1007/s11051-016-3406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3406-1

Keywords

Navigation