Skip to main content

Advertisement

Log in

Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aramouni P, Zebouni E, Tashkandi E, Dib S, Salameh Z, Almas K (2008) Fracture resistance and failure location of zirconium and metallic implant abutments. J Contemp Dent Pract 9:41–48

    Google Scholar 

  • Asadpour E, Ghorbani A, Sadeghnia HR (2014a) Water-soluble compounds of lettuce inhibit DNA damage and lipid peroxidation induced by glucose/serum deprivation in N2a cells. Acta Pol Pharm 71:409–413

    Google Scholar 

  • Asadpour E, Sadeghnia HR, Ghorbani A, Boroushaki MT (2014b) Effect of zirconium dioxide nanoparticles on glutathione peroxidase enzyme in PC12 and N2a cell lines. Iran J Pharm Res 13:1141–1148

    Google Scholar 

  • Blair IA (2008) DNA adducts with lipid peroxidation products. J Biol Chem 283:15545–15549. doi:10.1074/jbc.R700051200

    Article  Google Scholar 

  • Brunner TJ et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381

    Article  Google Scholar 

  • Caicedo M, Jacobs JJ, Reddy A, Hallab NJ (2008) Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J Biomed Mater Res A 86:905–913. doi:10.1002/jbm.a.31789

    Article  Google Scholar 

  • Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A (2004) Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25:215–228

    Article  Google Scholar 

  • Catauro M, Raucci M, Ausanio G (2008) Sol-gel processing of drug delivery zirconia/polycaprolactone hybrid materials. J Mater Sci Mater Med 19:531–540. doi:10.1007/s10856-007-3065-y

    Article  Google Scholar 

  • Catelas I, Huk OL, Petit A, Zukor DJ, Marchand R, Yahia L (1998) Flow cytometric analysis of macrophage response to ceramic and polyethylene particles: effects of size, concentration, and composition. J Biomed Mater Res 41:600–607. doi:10.1002/(SICI)1097-4636(19980915)41:4<600:AID-JBM12>3.0.CO;2-I

    Article  Google Scholar 

  • Catelas I, Petit A, Zukor DJ, Marchand R, Yahia L, Huk OL (1999) Induction of macrophage apoptosis by ceramic and polyethylene particles in vitro. Biomaterials 20:625–630

    Article  Google Scholar 

  • Chang PP, Henegbarth EA, Lang LA (2007) Maxillary zirconia implant fixed partial dentures opposing an acrylic resin implant fixed complete denture: a two-year clinical report. J Prosthet Dent 97:321–330. doi:10.1016/S0022-3913(07)60020-1

    Article  Google Scholar 

  • Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543. doi:10.1016/j.biomaterials.2005.07.034

    Article  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. doi:10.1016/j.freeradbiomed.2009.12.022

    Article  Google Scholar 

  • Colilla M, Manzano M, Izquierdo-Barba I, Vallet-Regí M, Boissiére C, Sanchez C (2009) Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chem Mater 22:1821–1830. doi:10.1021/cm9033484

    Article  Google Scholar 

  • Davenport A, Gura V, Ronco C, Beizai M, Ezon C, Rambod E (2007) A wearable haemodialysis device for patients with end-stage renal failure a pilot study. Lancet 370:2005–2010. doi:10.1016/S0140-6736(07)61864-9

    Article  Google Scholar 

  • Demir E, Burgucu D, Turna F, Aksakal S, Kaya B (2013) Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Toxicol Environ Health A 76:990–1002. doi:10.1080/15287394.2013.830584

    Article  Google Scholar 

  • Di Virgilio AL, Arnal PM, Maisuls I (2014) Biocompatibility of core@shell particles: cytotoxicity and genotoxicity in human osteosarcoma cells of colloidal silica spheres coated with crystalline or amorphous zirconia. Mutat Res Genet Toxicol Environ Mutagen 770:85–94. doi:10.1016/j.mrgentox.2014.05.009

    Article  Google Scholar 

  • Garvin KL, Hartman CW, Mangla J, Murdoch N, Martell JM (2009) Wear analysis in THA utilizing oxidized zirconium and crosslinked polyethylene. Clin Orthop Relat Res 467:141–145. doi:10.1007/s11999-008-0544-5

    Article  Google Scholar 

  • Ghasempour S, Shokrgozar MA, Ghasempour R, Alipour M (2015) Investigating the cytotoxicity of iron oxide nanoparticles in vivo and in vitro studies. Exp Toxicol Pathol. doi:10.1016/j.etp.2015.07.005

    Google Scholar 

  • Ghorbani A, Sadeghnia HR, Asadpour E (2015) Mechanism of protective effect of lettuce against glucose/serum deprivation-induced neurotoxicity. Nutr Neurosci 18:103–109. doi:10.1179/1476830513y.0000000107

    Article  Google Scholar 

  • Gillani R, Ercan B, Qiao A, Webster TJ (2010) Nanofunctionalized zirconia and barium sulfate particles as bone cement additives. Int J Nanomed 5:1–11

    Article  Google Scholar 

  • Gomoll AH, Fitz W, Scott RD, Thornhill TS, Bellare A (2008) Nanoparticulate fillers improve the mechanical strength of bone cement. Acta Orthop 79:421–427. doi:10.1080/17453670710015349

    Article  Google Scholar 

  • Hallab NJ, Anderson S, Caicedo M, Skipor A, Campbell P, Jacobs JJ (2004) Immune responses correlate with serum-metal in metal-on-metal hip arthroplasty. J Arthroplast 19:88–93

    Article  Google Scholar 

  • Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO (2000) Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res 49:353–361. doi:10.1002/(SICI)1097-4636(20000305)49

    Article  Google Scholar 

  • Hansen S (2006) Sorbent dialysis in the third millennium. Nephrol News Issues 20(43):45

    Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983. doi:10.1016/j.tiv.2005.06.034

    Article  Google Scholar 

  • Jeong YS, Oh WK, Kim S, Jang J (2011) Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres. Biomaterials 32:7217–7225. doi:10.1016/j.biomaterials.2011.06.020

    Article  Google Scholar 

  • Khodagholi F, Ansari N, Amini M, Tusi SK (2012) Involvement of molecular chaperones and the transcription factor Nrf2 in neuroprotection mediated by para-substituted-4,5-diaryl-3-thiomethyl-1,2,4-triazines. Cell Stress Chaperones 17:409–422. doi:10.1007/s12192-011-0316-0

    Article  Google Scholar 

  • Kreyling WG et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530. doi:10.1080/00984100290071649

    Article  Google Scholar 

  • Lappalainen R, Santavirta SS (2005) Potential of coatings in total hip replacement. Clin Orthop Relat Res 430:72–79. doi:10.1097/01.blo.0000150000.75660.ff

    Article  Google Scholar 

  • Lee DB, Roberts M (2008) A peritoneal-based automated wearable artificial kidney. Clin Exp Nephrol 12:171–180. doi:10.1007/s10157-008-0050-9

    Article  Google Scholar 

  • Lee DB, Roberts M, Bluchel CG, Odell RA (2010) Zirconium: biomedical and nephrological applications. ASAIO J 56:550–556. doi:10.1097/MAT.0b013e3181e73f20

    Article  Google Scholar 

  • Lin W, Huang YW, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259. doi:10.1016/j.taap.2006.10.004

    Article  Google Scholar 

  • Link N, Brunner TJ, Dreesen IA, Stark WJ, Fussenegger M (2007) Inorganic nanoparticles for transfection of mammalian cells and removal of viruses from aqueous solutions. Biotechnol Bioeng 98:1083–1093. doi:10.1002/bit.21525

    Article  Google Scholar 

  • Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77:5894–5901. doi:10.1021/ac050791t

    Article  Google Scholar 

  • Liu S, Xu L, Zhang T, Ren G, Yang Z (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267:172–177. doi:10.1016/j.tox.2009.11.012

    Article  Google Scholar 

  • Liu SQ, Xu JJ, Chen HY (2004) A reversible adsorption-desorption interface of DNA based on nano-sized zirconia and its application. Colloids Surf B 36:155–159. doi:10.1016/j.colsurfb.2004.03.020

    Article  Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12:635–641. doi:10.1080/10611860400015936

    Article  Google Scholar 

  • Ma Y, Zheng YM, Chen JP (2011) A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: synthesis, characterization and performance. J Colloid Interface Sci 354:785–792. doi:10.1016/j.jcis.2010.10.041

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Nakarani M, Misra AK, Patel JK, Vaghani SS (2010) Itraconazole nanosuspension for oral delivery: formulation, characterization and in vitro comparison with marketed formulation. Daru 18:84–90

    Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi:10.1080/08958370490439597

    Article  Google Scholar 

  • Parham H, Rahbar N (2010) Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J Hazard Mater 177:1077–1084. doi:10.1016/j.jhazmat.2010.01.031

    Article  Google Scholar 

  • Perreault F, Pedroso Melegari S, Henning da Costa C, de Oliveira Franco Rossetto AL, Popovic R, Gerson Matias W (2012) Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 441:117–124. doi:10.1016/j.scitotenv.2012.09.065

    Article  Google Scholar 

  • Pezzotti G, Saito T, Padeletti G, Cossari P, Yamamoto K (2010) Nano-scale topography of bearing surface in advanced alumina/zirconia hip joint before and after severe exposure in water vapor environment. J Orthop Res 28:762–766. doi:10.1002/jor.21069

    Google Scholar 

  • Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Article  Google Scholar 

  • Rainer M et al (2008) Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Proteomics 8:4593–4602. doi:10.1002/pmic.200800448

    Article  Google Scholar 

  • Schadel A, Thun G, Stork L, Metzler R (1993) Immunodiffusion and immunohistochemical investigations on the reactivity of oxide ceramic middle-ear implants. ORL J Otorhinolaryngol Relat Spec 55:216–221

    Article  Google Scholar 

  • Sebastia J, Cristofol R, Martin M, Rodriguez-Farre E, Sanfeliu C (2003) Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y. Cytometry A 51:16–25. doi:10.1002/cyto.a.10003

    Article  Google Scholar 

  • Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. doi:10.1016/j.yexmp.2008.12.004

    Article  Google Scholar 

  • Sollazzo V et al (2008) Genetic effect of zirconium oxide coating on osteoblast-like cells. J Biomed Mater Res B 84:550–558. doi:10.1002/jbm.b.30903

    Article  Google Scholar 

  • Tahmasebpour MBAA, Razavi Aghjeh MK (2008) Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. J Eur Ceram Soc 28:773–778

    Article  Google Scholar 

  • Tan K, Cheang P, Ho IA, Lam PY, Hui KM (2007) Nanosized bioceramic particles could function as efficient gene delivery vehicles with target specificity for the spleen. Gene Ther 14:828–835. doi:10.1038/sj.gt.3302937

    Article  Google Scholar 

  • Tsukamoto R, Chen S, Asano T, Ogino M, Shoji H, Nakamura T, Clarke IC (2006) Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation. Acta Orthop 77:505–511. doi:10.1080/17453670610046479

    Article  Google Scholar 

  • Uludag B, Sahin V, Ozturk O (2008) Fabrication of zirconium primary copings to provide retention for a mandibular telescopic overdenture: a clinical report. Int J Prosthodont 21:509–510

    Google Scholar 

  • Vigolo P, Fonzi F (2008) An in vitro evaluation of fit of zirconium-oxide-based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont 17:621–626. doi:10.1111/j.1532-849X.2008.00366.x

    Article  Google Scholar 

  • Wang F, Jiao C, Liu J, Yuan H, Lan M, Gao F (2011) Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol In Vitro 25:1548–1556. doi:10.1016/j.tiv.2011.05.019

    Article  Google Scholar 

  • Wang ML, Tuli R, Manner PA, Sharkey PF, Hall DJ, Tuan RS (2003) Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. J Orthop Res 21:697–707. doi:10.1016/S0736-0266(02)00241-3

    Article  Google Scholar 

  • Wu J, Sun J, Xue Y (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199:269–276. doi:10.1016/j.toxlet.2010.09.009

    Article  Google Scholar 

  • Xia T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. doi:10.1021/nl061025k

    Article  Google Scholar 

  • Xu LJ, Zhao JX, Zhang T, Ren GG, Yang Z (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24:211–217. doi:10.1002/tox.20418

    Article  Google Scholar 

  • Yang Y, Wang Z, Yang M, Li J, Zheng F, Shen G, Yu R (2007) Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta 584:268–274. doi:10.1016/j.aca.2006.11.055

    Article  Google Scholar 

  • Zhang S, Ye J, Dong G (2010) Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci 40:311–320. doi:10.1007/s12031-009-9285-5

    Article  Google Scholar 

  • Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30:220–230. doi:10.1016/j.neuro.2008.12.005

    Article  Google Scholar 

Download references

Acknowledgment

The authors sincerely thank Dr. Helmut Kubista for his kind help in manuscript copy editing. This study is the part of the results of a research project and thesis presented for a degree of Doctor of Philosophy in pharmacology (Thesis no. A385). This project was financially supported by Vice Chancellor for Research, Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Boroushaki.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadpour, E., Sadeghnia, H.R., Ghorbani, A. et al. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells. J Nanopart Res 18, 14 (2016). https://doi.org/10.1007/s11051-015-3316-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3316-7

Keywords

Navigation