Skip to main content

Advertisement

Log in

Surface modification of paclitaxel-loaded tri-block copolymer PLGA-b-PEG-b-PLGA nanoparticles with protamine for liver cancer therapy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA-b-PEG-b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA-b-PEG-b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alibolandi M, Ramezani M, Sadeghi F, Abnous K, Hadizadeh F (2015) Epithelial cell adhesion molecule aptamer conjugated PEG-PLGA nanopolymersomes for targeted delivery of doxorubicin to human breast adenocarcinoma cell line in vitro. Int J Pharm 479:241–251

    Article  Google Scholar 

  • Bei YY, Yuan ZQ, Zhang L, Zhou XF, Chen WL, Xia P, Liu Y, You BG, Hu XJ, Zhu QL, Zhang CG, Zhang XN, Jin Y (2014) Novel self-assembled micelles based on palmitoyl-trimethyl-chitosan for efficient delivery of harmine to liver cancer. Expert Opin Drug Deliv 11(6):843–854

    Article  Google Scholar 

  • Biswas S, Torchilin VP (2014) Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 66:26–41

    Article  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  Google Scholar 

  • Chen HB, Zheng Y, Tian G, Tian Y, Zeng XW, Liu G, Liu KX, Li L, Li Z, Mei L, Huang LQ (2011) Oral delivery of DMAB-modified docetaxel-loaded PLGA-TPGS nanoparticles for cancer chemotherapy. Nanoscale Res Lett 6:1–10

    Google Scholar 

  • Chen Z, Wang Z, Chen X, Xu H, Liu J (2013) Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res 15:1930

    Article  Google Scholar 

  • Danhier F, Lecouturier N, Vroman B, Jerome C, Marchand-Brynaert J, Feron O, Preat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133(1):11–17

    Article  Google Scholar 

  • Fox ME, Szoka FC, Frechet JM (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42(8):1141–1151

    Article  Google Scholar 

  • Gala-Garcia A, Carneiro MBH, Silva GAB, Ferreira LS, Vieira LQ, Marques MM, Sinisterra RD, Cortes ME (2012) In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly(lactic-co-glycolic acid) composite. J Mater Sci Mater in Med 23(7):1785–1796

    Article  Google Scholar 

  • Gao YH, Yang CH, Liu X, Ma RJ, Kong DL, Shi LQ (2012) A multifunctional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery. Macromol Biosci 12(2):251–259

    Article  Google Scholar 

  • Geever LM, Cooney CC, Lyons JG, Kennedy JE, Nugent MJD, Devery S, Higginbotham CL (2008) Characterisation and controlled drug release from novel drug-loaded hydrogels. Eur J Pharm Biopharm 69(3):1147–1159

    Article  Google Scholar 

  • Gomez JMM, Fischer S, Csaba N, Kundig TM, Merkle HP, Gander B, Johansen P (2007) A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 24(10):1927–1935

    Article  Google Scholar 

  • Gomez JMM, Csaba N, Fischer S, Sichelstiel A, Kundig TM, Gander B, Johansen P (2008) Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release 130(2):161–167

    Article  Google Scholar 

  • Gu YD, Zhong YN, Meng FH, Cheng R, Deng C, Zhong ZY (2013) Acetal-Linked Paclitaxel Prodrug Micellar Nanoparticles as a Versatile and Potent Platform for Cancer Therapy. Biomacromolecules 14(8):2772–2780

    Article  Google Scholar 

  • Han RL, Zhu JM, Yang XL, Xu HB (2011) Surface modification of poly(D, L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J Biomed Mater Res Part A 96A(1):142–149

    Article  Google Scholar 

  • Hariharan S, Bhardwaj V, Bala I, Sitterberg J, Bakowsky U, Kumar MNVR (2006) Design of estradiol loaded PLGA nanoparticulate formulations: a potential oral delivery system for hormone therapy. Pharm Res 23(1):184–195

    Article  Google Scholar 

  • He ZL, Wang Q, Sun Y, Shen M, Zhu MJ, Gu ML, Wang Y, Duan YR (2014) The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility. J Biomater Sci Polym Ed 25(9):943–964

    Article  Google Scholar 

  • Huang LQ, Chen HB, Zheng Y, Song XS, Liu RY, Liu KX, Zeng XW, Mei L (2011) Nanoformulation of D-alpha-tocopheryl polyethylene glycol 1000 succinate-b-poly(epsilon-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy. Integr Biol 3(10):993–1002

    Article  Google Scholar 

  • Jiang T, Li YM, Lv Y, Cheng YJ, He F, Zhuo RX (2014) Biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) for controlled release of doxorubicin. J Mater Sci Mater Med 25(1):131–139

    Article  Google Scholar 

  • Jin C, Yang ZX, Yang JY, Li HM, He Y, An JZ, Bai L, Dou KF (2013) Paclitaxel-loaded nanoparticles decorated with anti-CD133 antibody: a targeted therapy for liver cancer stem cells. J Nanopart Res 16(1):1–15

    Article  Google Scholar 

  • Lewis AL, Holden RR, Chung ST, Czuczman P, Kuchel T, Finnie J, Porter S, Foster D (2013) Feasibility, safety and pharmacokinetic study of hepatic administration of drug-eluting beads loaded with irinotecan (DEBIRI) followed by intravenous administration of irinotecan in a porcine model. J Mater Sci Mater Med 24(1):115–127

    Article  Google Scholar 

  • Liang HF, Yang TF, Huang CT, Chen MC, Sung HW (2005) Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105(3):213–225

    Article  Google Scholar 

  • Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, Sung HW (2006a) Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27(9):2051–2059

    Article  Google Scholar 

  • Liang HF, Chen SC, Chen MC, Lee PW, Chen CT, Sung HW (2006b) Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjug Chem 17(2):291–299

    Article  Google Scholar 

  • Lu Z, Yeh TK, Wang J, Chen L, Lyness G, Xin Y, Wientjes MG, Bergdall V, Couto G, Alvarez-Berger F, Kosarek CE, Au JLS (2011) Paclitaxel gelatin nanoparticles for intravesical bladder cancer therapy. J Urol 185(4):1478–1483

    Article  Google Scholar 

  • Lui WY, Chang YF, Li LL, Ho LK, Su TL, Chen JY, Liu TY, P’Eng F, Chi CW (1998) Differential Paclitaxel-induced cytotoxicity in rodent and human hepatoma cell lines. Anticancer Res 18(5A):3339–3345

    Google Scholar 

  • Madani F, Bessodes M, Lakrouf A, Vauthier C, Scherman D, Chaumeil JC (2007) PEGylation of microspheres for therapeutic embolization: preparation, characterization and biological performance evaluation. Biomaterials 28(6):1198–1208

    Article  Google Scholar 

  • Mei L, Zhang YQ, Zheng Y, Tian G, Song CX, Yang DY, Chen HL, Sun HF, Tian Y, Liu KX, Li Z, Huang LQ (2009) A novel docetaxel-loaded poly (epsilon-caprolactone)/pluronic F68 nanoparticle overcoming multidrug resistance for breast cancer treatment. Nanoscale Res Lett 4(12):1530–1539

    Article  Google Scholar 

  • Pham H, Nguyen QP (2014) Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J Nanopart Res 16:2137

    Article  Google Scholar 

  • Phromviyo N, Swatsitang E, Chompoosor A (2014) Effect of a surface stabilizer on the formation of polyoxalate nanoparticles and their release profiles. Vacuum 107:208–212

    Article  Google Scholar 

  • Rojnik M, Kocbek P, Moret F, Compagnin C, Celotti L, Bovis MJ, Woodhams JH, Macrobert AJ, Scheglmann D, Helfrich W, Verkaik MJ, Papini E, Reddi E, Kos J (2012) In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomed (Lond) 7(5):663–677

    Article  Google Scholar 

  • Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71

    Article  Google Scholar 

  • Sorgi FL, Bhattacharya S, Huang L (1997) Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther 4(9):961–968

    Article  Google Scholar 

  • Tomasina J, Lheureux S, Gauduchon P, Rault S, Malzert-Freon A (2013) Nanocarriers for the targeted treatment of ovarian cancers. Biomaterials 34(4):1073–1101

    Article  Google Scholar 

  • Umerska A, Paluch KJ, Martinez MJ, Corrigan OI, Medina C, Tajber L (2014) Self-assembled hyaluronate/protamine polyelectrolyte nanoplexes: synthesis, stability, biocompatibility and potential use as peptide carriers. J Biomed Nanotechnol 10(12):3658–3673

    Article  Google Scholar 

  • Wang Z, Zhang G, Wu J, Jia M (2013) Adjuvant therapy for hepatocellular carcinoma: current situation and prospect. Drug Discov Ther 7(4):137–143

    Google Scholar 

  • Wang T, Zhu DW, Liu G, Tao W, Cao W, Zhang LH, Wang LJ, Chen HB, Mei L, Huang LQ, Zeng XW (2015) DTX-loaded star-shaped TAPP-PLA-b-TPGS nanoparticles for cancer chemical and photodynamic combination therapy. Rsc Adv 5(62):50617–50627

    Article  Google Scholar 

  • Watanabe K, Nishio Y, Makiura R, Nakahira A, Kojima C (2013) Paclitaxel-loaded hydroxyapatite/collagen hybrid gels as drug delivery systems for metastatic cancer cells. Int J Pharm 446(1–2):81–86

    Article  Google Scholar 

  • Yadav KS, Jacob S, Sachdeva G, Chuttani K, Mishra AK, Sawant KK (2011) Long circulating PEGylated PLGA nanoparticles of cytarabine for targeting leukemia. J Microencapsul 28(8):729–742

    Article  Google Scholar 

  • Yanagihara K, Takigahira M, Kubo T, Ochiya T, Hamaguchi T, Matsumura Y (2014) Marked antitumor effect of NK012, a SN-38-incorporating micelle formulation, in a newly developed mouse model of liver metastasis resulting from gastric cancer. Ther Deliv 5(2):129–138

    Article  Google Scholar 

  • Yang YW, Hsu PYJ (2008) The effect of poly(D, L-lactide-co-glycolide) microparticles with polyelectrolyte self-assembled multilayer surfaces on the cross-presentation of exogenous antigens. Biomaterials 29(16):2516–2526

    Article  Google Scholar 

  • Yu L, Zhang HA, Ding JD (2010) Effects of precipitate agents on temperature-responsive sol-gel transitions of PLGA-PEG-PLGA copolymers in water. Colloid Polym Sci 288(10–11):1151–1159

    Article  Google Scholar 

  • Yu JH, Li XY, Luo Y, Lu W, Huang J, Liu SY (2013) Poly(ethylene glycol) shell-sheddable magnetic nanomicelle as the carrier of doxorubicin with enhanced cellular uptake. Colloids Surf B Biointerfaces 107:213–219

    Article  Google Scholar 

  • Yuan JH, Zhang RP, Zhang RG, Guo LX, Wang XW, Luo D, Xie Y, Xie H (2000) Growth-inhibiting effects of taxol on human liver cancer in vitro and in nude mice. World J Gastroenterol 6(2):210–215

    Google Scholar 

  • Zeng XW, Tao W, Mei L, Huang LG, Tan CY, Feng SS (2013) Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34(25):6058–6067

    Article  Google Scholar 

  • Zeng XW, Tao W, Wang ZY, Zhang XD, Zhu HJ, Wu YP, Gao YF, Liu KW, Jiang YY, Huang LQ, Mei L, Feng SS (2015) Docetaxel-loaded nanoparticles of dendritic amphiphilic block copolymer H40-PLA-b-TPGS for cancer treatment. Part Part Syst Charact 32(1):112–122

    Article  Google Scholar 

  • Zhang Z, Mei L, Feng SS (2013) Paclitaxel drug delivery systems. Expert Opin Drug Deliv 10(3):325–340

    Article  Google Scholar 

  • Zhang XD, Dong YC, Zeng XW, Liang X, Li XM, Tao W, Chen HB, Jiang YY, Mei L, Feng SS (2014) The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35(6):1932–1943

    Article  Google Scholar 

  • Zhao T, Chen H, Dong Y, Zhang J, Huang H, Zhu J, Zhang W (2013) Paclitaxel-loaded poly(glycolide-co-epsilon-caprolactone)-b-D-alpha-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy. Int J Nanomed 8:1947–1957

    Google Scholar 

  • Zhu H, Chen H, Zeng X, Wang Z, Zhang X, Wu Y, Gao Y, Zhang J, Liu K, Liu R, Cai L, Mei L, Feng SS (2014) Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 35(7):2391–2400

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 51203085, 31270019, and 81302553), National High-Tech Research and development program (No. 2015AA020316), Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2014A030306036), Scientific and Technological Innovation Bureau of Nanshan District (No. KC2014JSCX0023A), Natural Science Foundation of Guangdong Province (No. 2015A030313848), Shenzhen Peacock Innovation Team (No. 110811003586331) and Shenzhen Key Laboratory of Marine Biomedical Materials (No. ZDSY20130401165820356).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Liu or Xiaowei Zeng.

Additional information

Nansha Gao, Zhihong Chen, and Xiaojun Xiao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., Chen, Z., Xiao, X. et al. Surface modification of paclitaxel-loaded tri-block copolymer PLGA-b-PEG-b-PLGA nanoparticles with protamine for liver cancer therapy. J Nanopart Res 17, 347 (2015). https://doi.org/10.1007/s11051-015-3121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3121-3

Keywords

Navigation