Skip to main content
Log in

Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO2 nanorods

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Tin oxide (SnO2) nanorods were prepared by surfactant-free hydrothermal method and their methane gas sensing characteristics were studied. These SnO2 nanorods were characterized by XRD, SEM, TEM, EDS, EELS, UV–Visible, and Raman spectroscopies. The SnO2 nanorods were single crystalline possessing tetragonal rutile structure. Average diameter of the nanorods was in the range from 8 to 48 nm with an average length of 174 nm. The diameter of the nanorod was found to increase with the increase of reaction time. The E g and A 1g Raman modes showed a significant blue and red shift, respectively, and this was due to the contribution from the phonons with q ≠ 0 in the first Brillouin zone. Gas sensing measurements against methane gas showed a good sensitivity at an operating temperature of 100 °C, and the maximum gas sensitivity was observed at 175 °C. Our present experiments clearly demonstrate the sensitivity of methane up to 300 ppm at 100 °C, which is a lower operating temperature compared to the previously reported values. Hydrogen sensor was also fabricated with the same SnO2 nanorods and its performance was compared with the methane gas sensor. These rods show better sensitivity toward methane gas than hydrogen gas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Basu S, Basu PK (2009) Nanocrystalline metal oxides for methane sensors: Role of noble metals. J Sens 2009:1–20. doi:10.1155/2009/861968

    Google Scholar 

  • Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Surf Sci 79(47):154

    Google Scholar 

  • Biaggi-Labiosa A, Sola´ F, Lebron-Col´on M, Evans LJ, Xu JC, Hunter GW, Berger GM, Gonzalez JM (2012) A novel methane sensor based on porous SnO2 nanorods: room temperature to high temperature detection. Nanotechnology 23:455501–455508. doi:10.1088/0957-4484/23/45/455501

    Article  Google Scholar 

  • Chen JS, Lou XW (2013) SnO2-Based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893. doi:10.1002/smll.201202601

    Article  Google Scholar 

  • Chen YJ, Xue XY, Wang YG, Wang TH (2005) Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl Phys Lett 87:233503. doi:10.1088/0957-4484/23/45/455501

    Article  Google Scholar 

  • Chen YJ, Nie L, Xue XY, Wang YG, Wang TH (2006) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett 88(083105):1–3. doi:10.1063/1.2166695

    Google Scholar 

  • Cheng B, Shi W, Russell-Tanner JM, Zhang L, Samulski ET (2006) Synthesis of variable-aspect-ratio, single-crystalline ZnO nanostructures. Inorg Chem 45:1208–1214. doi:10.1021/ic051786a

    Article  Google Scholar 

  • Das S, Kar S, Chaudhuri S (2006) Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. J Appl Phys 99:114303. doi:10.1063/1.2200449

    Article  Google Scholar 

  • Das A, Ramana BV, Prasad AK, Panda D, Dhara S, Tyagi AK (2014) The role of SnO2 quantum dots in improved CH4 sensing at low temperature. J Mater Chem C 2:164–171. doi:10.1039/c3tc31728e

    Article  Google Scholar 

  • Die′guez A A, Romano-Rodri′guez A, Vila′ A, Morante JR (2001) The complete Raman spectrum of nanometric SnO2 particles. J Appl Phys 90:1550–1557. doi:10.1063/1.1385573

    Article  Google Scholar 

  • Haridas D, Gupta V (2012) Enhanced response characteristics of SnO2 thin film based sensors loaded with Pd clusters for methane detection. Sens Actuators B 166:156–164

    Article  Google Scholar 

  • He JH, Wu TH, Hsin CL, Li KM, Chen LJ, Chueh YL, Chou LJ, Wang ZL (2006) Beaklike SnO2 nanorods with strong photoluminescentand field-emission properties. Small 2:116–120. doi:10.1002/smll.200500210

    Article  Google Scholar 

  • Huang H, Lee YC, Tan OK, Zhou W, Peng N, Zhang Q (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20:115501–115505. doi:10.1088/0957-4484/20/11/115501

    Article  Google Scholar 

  • Iakoubovskii K, Mitsuishi K, Nakayama Y, Furuya K (2008) Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: atomic number dependent oscillatory behavior. Phys Rev B 77:104102. doi:10.1103/PhysRevB.77.104102

    Article  Google Scholar 

  • Kar A, Kundu S, Patra A (2011) Surface defect related luminescence properties of SnO2 nanorods and nanoparticles. J Phys Chem C 115(1):118–124. doi:10.1021/jp110313b

    Article  Google Scholar 

  • Katiyar RS, Dawson RP, Hargreave MM, Wilkinson GR (1971) Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO2. J Phys C 4:2421

    Article  Google Scholar 

  • Ko Y-D, Kang J-G, Park J-G, Lee S-J, Kim D-W (2009) Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20:455701–455706. doi:10.1088/0957-4484/20/45/455701

    Article  Google Scholar 

  • Lee MS, Oh E, Jeong SH (2011) Fabrication of H2 gas sensor based on ZnO Nanarod Arrays by a sonochemical method. Bull Korean Chem Soc 32:3735–3737. doi:10.5012/bkcs.2011.32.10.3735

    Article  Google Scholar 

  • Li Y, Yin W, Deng R, Chen R, Chen J, Yan Q, Yao B, Sun H, Wei SH, Wu T (2012) Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater 4:1–6. doi:10.1038/am.2012.56

    Article  Google Scholar 

  • Li Y, Qiao L, Yan D, Wang L, Zeng Y, Yang H (2014) Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance. J Alloys Compd 586:399–403

    Article  Google Scholar 

  • Liao L, Lu HB, Li JC, He H, Wang DF, Fu DJ, Liu C, Zhang WF (2007) Size dependence of gas sensitivity of ZnO nanorods. J Phys Chem C 111:1900–1903. doi:10.1021/jp065963k

    Article  Google Scholar 

  • Liu Z, Wu XL, Gao F, Shen JC, Li TH, Chu PK (2011) Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy. Solid State Commun 15:811–814. doi:10.1016/j.ssc.2011.03.029

    Article  Google Scholar 

  • Liu LZ, Li TH, Wu XL, Shen JC, Chu PK (2012) Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J Raman Spectrosc 43:1423–1426. doi:10.1002/jrs.4078

    Article  Google Scholar 

  • Moreno S, Egerton RF, Rehr JJ, Midgley PA (2005) Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations. Phys Rev B 71:035103. doi:10.1103/PhysRevB.71.035103

    Article  Google Scholar 

  • Pal U, Pal M, Zeferino RS (2012) Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process. J Nanopart Res 14(969):1–10. doi:10.1007/s11051-012-0969-3

    Google Scholar 

  • Pati S, Majumder SB, Banerji P (2012) Role of oxygen vacancy in optical and gas sensing characteristics of ZnO thin films. J Alloys Compd 541:376–379. doi:10.1016/j.jallcom.2012.07.014

    Article  Google Scholar 

  • Rumyantseva MN, Gaskov AM, Rosman N, Pagnier T, Morante JR (2005) Raman surface vibration modes in nanocrystalline SnO2: correlation with gas sensor performances. Chem Mater 17:893–901. doi:10.1021/cm0490470

    Article  Google Scholar 

  • Schierbaum KD, Weimar U, Göpel W (1992) Comparison of ceramic, thick-film and thin-film chemical sensors based upon SnO2. Sens Actuators B 7:709–716. doi:10.1016/0925-4005/92

    Article  Google Scholar 

  • Sedghi SM, Mortazavi Y, Khodadadi A (2010) Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens Actuators B 145:7–12. doi:10.1016/j.snb.2009.11.002

    Article  Google Scholar 

  • Singh I, Bedi RK (2011) Surfactant-assisted synthesis, characterizations, and room temperature ammonia sensing mechanism of nanocrystalline CuO. Solid State Sci 13:2011–2018

    Article  Google Scholar 

  • Tongpool R, Yoriya S (2005) Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin solid films 477:148–152. doi:10.1016/j.tsf.2004.08.125

    Article  Google Scholar 

  • Traylor JG, Smith HG, Nicklow RM, Wilkinson MK (1971) Lattice dynamics of rutile. Phys Rev B 3:3457–3472

    Article  Google Scholar 

  • Wang D, Song C (2005) Controllable synthesis of ZnO nanorod and prism arrays in a large area. J Phys Chem B 109:12697–12700. doi:10.1021/jp0506134

    Article  Google Scholar 

  • Xi G, Ye J (2010) Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. Inorg Chem 49:2302–2309. doi:10.1021/ic902131a

    Article  Google Scholar 

  • Xu CH, Shi SQ, Surya C (2008) Handbook of nanoceramics and their based nanodevices, vol 20. American Scientific Publishers, Valencia, pp 1–22

    Google Scholar 

  • Xu C, Jiang Y, Yi D, Sun S, Yu Z (2012) Environment-dependent surface structures and stabilities of SnO2 from the first principles. J Appl Phys 111(063504):1–10. doi:10.1063/1.3694033

    Google Scholar 

  • Xue X, Chen Z, Ma C, Xing L, Chen Y, Wang Y, Wang T (2010) One-step synthesis and gas-sensing characteristics of uniformly loaded Pt@SnO2 nanorods. J Phys Chem C114:3968–3972. doi:10.1021/jp908343r

    Google Scholar 

  • Yang HY, Yu SF, Cheng CW, Tsang SH, Liang HK, Fan HJ (2009) Randomly packed n-SnO2nanorods/p-SiC heterojunction light-emitting diodes. Appl Phys Lett 95:201104. doi:10.1063/1.3266523

    Article  Google Scholar 

Download references

Acknowledgments

The UGC-DAE-CSR (CSR-KN/CRS-14/2011–12/586) is acknowledged for financial support. The authors also thank K. Kamali and T. R. Ravindran of CMPD, IGCAR, Kalpakkam for photoluminescence and Raman experiments and A. Das of SND, IGCAR, Kalpakkam for gas sensing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thangadurai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amutha, A., Amirthapandian, S., Prasad, A.K. et al. Methane gas sensing at relatively low operating temperature by hydrothermally prepared SnO2 nanorods. J Nanopart Res 17, 289 (2015). https://doi.org/10.1007/s11051-015-3089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3089-z

Keywords

Navigation