Skip to main content

Advertisement

Log in

Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Size-controlled fluorescence silica nanoparticles (NPs) are widely used for nanotoxicological studies, and diagnostic and targeted therapies. Such particles can be easily visualized and localized within cell environments and their interactions with cellular components can be monitored. We developed an amino acid-catalyzed seed regrowth technique (ACSRT) to synthesize spherical rhodamine-doped silica NPs with tunable sizes, low polydispersity index as well as high labeling efficiency and enhanced fluorescence photostability. Via ACSRT, fluorescent silica NPs can be obtained by introducing the fluorophore in seed formation step, while a precise control over particle size can be achieved by simply adjusting the concentration of reactants in the regrowth step. Unlike the conventional methods, the proposed ACSRT permits the synthesis of fluorescent silica NPs in a water-based system, without the use of any surfactants and co-surfactants. By this approach, additional linkers for covalent coupling of the fluorophore to silica matrix can be omitted, while a remarkable doping efficiency is achieved. The suitability of these particles for biomedical application is demonstrated by in vitro tests with normal and malignant bone cells. We show that the particles can be easily and unambiguously visualized by a conventional fluorescence microscope, localized, and distinguished within intracellular components. In addition, it is presented that the cellular uptake and cytotoxic profile of silica NPs are strongly correlated to the particle size, concentration, and cell line. The results of in vitro experiments demonstrate that tunable fluorescent silica NPs synthesized with ACSRT can be potentially used for toxicological assessments and nanomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Rawi M, Diabate S, Weiss C (2011) Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch Toxicol 85:813–826

    Article  Google Scholar 

  • Bagwe R, Yang C, Hilliard L, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342

    Article  Google Scholar 

  • Bäumler W, Penzkofer A (1990) Fluorescence spectroscopic analysis of N and P isomers of DODCI. Chem Phys 140:75–97

    Article  Google Scholar 

  • Beck G Jr, Ha S, Camalier C, Yamaguchi M, Li Y, Lee J, Weitzmann M (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine 8:793–803

    Article  Google Scholar 

  • Bollhorst T, Shahabi S, Wörz K, Petters C, Dringen R, Maas M, Rezwan K (2014) Bifunctional submicron colloidosomes co-assembled from fluorescent and superparamagnetic nanoparticles. Angew Chem 127(1):120–125

    Article  Google Scholar 

  • Brinker C, Scherer G (1990) Sol–gel science. Academic Press, New York

    Google Scholar 

  • Chang J-S, Chang K, Hwang D-F, Kong Z-L (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    Article  Google Scholar 

  • Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228

    Article  Google Scholar 

  • Febvay S, Marini D, Belcher A, Clapham D (2010) Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano Lett 10:2211–2219

    Article  Google Scholar 

  • Finnie K, Bartlett J, Barbe´ C, Kong L (2007) Formation of silica nanoparticles in microemulsions. Langmuir 23:3017–3024

    Article  Google Scholar 

  • Fuller J, Zugates G, Ferreira L, Ow H, Nguyen N, Wiesner U, Langer R (2008) Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 29:1526–1532

    Article  Google Scholar 

  • Gao F, Tang L, Dai L, Wang L (2007) A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochim Acta Part A 67:517–521

    Article  Google Scholar 

  • Gao X, He J, Deng L, Cao H (2009) Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles. Opt Mater 31:1715–1719

    Article  Google Scholar 

  • Guarnieri D, Malvindi M, Belli V, Pompa P, Netti P (2014) Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity. J Nanopart Res 16:1–14

    Google Scholar 

  • Guo Y, Li X, Ye S, Zhang S (2013) Modern optical techniques provide a bright outlook for cell analysis. Trends Anal Chem 42:168–185

    Article  Google Scholar 

  • Ha S-W, Camalier C-E, Beck GR Jr, Lee J-K (2009) New method to prepare very stable and biocompatible fluorescent silica nanoparticles. Chem Commun 20:2881–2883

    Article  Google Scholar 

  • Hartlen K, Athanasopoulos A, Kitaev V (2008) Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Langmuir 24:1714–1720

    Article  Google Scholar 

  • He X, Wang Y, Wang K, Chen M, Chen S (2012) Fluorescence resonance energy transfer mediated large stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal Chem 84:9056–9064

    Google Scholar 

  • Holthaus M, Stolle J, Treccani L, Rezwan K (2012) Orientation of human osteoblasts on hydroxyapatite-based microchannels. Acta Biomater 8:394–403

    Article  Google Scholar 

  • Hornig S, Biskup C, Gra ¨fe A, Wotschadlo J, Liebert T, Mohr G, Heinze T (2008) Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter 4:1169–1172

    Article  Google Scholar 

  • Imhof A, Megens M, Engelberts J, de Lang D, Sprik R, Vos W (1999) Spectroscopy of fluorescein (FITC) dyed colloidal silica spheres. J Phys Chem B 103:1408–1415

    Article  Google Scholar 

  • Jia T, Cai Z, Chen X, Lin Z, Huang X, Chen X, Chen G (2009) Electrogenerated chemiluminescence ethanol biosensor based on alcohol dehydrogenase functionalized Ru(bpy)3 2 + doped silica nanoparticles. Biosens Bioelectron 25:263–267

    Article  Google Scholar 

  • Jin Y, Lohstreter S, Pierce D, Parisien J, Wu M, Hall C III, Zhao J (2008) Silica nanoparticles with continuously tunable sizes: synthesis and size effects on cellular contrast imaging. Chem Mater 20:4411–4419

    Article  Google Scholar 

  • Kumar R et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2:449–456

    Article  Google Scholar 

  • Labe´guerie-Ege´ AJ, McEvoy H, McDonagh C (2011) Synthesis, characterisation and functionalisation of luminescent silica nanoparticles. Nanopart Res 13:6455–6465

    Article  Google Scholar 

  • Larson D, Ow H, Vishwasrao H, Heikal A, Wiesner U, Webb W (2008) Silica nanoparticle architecture determines radiative properties of encapsulated fluorophores. Chem Mater 20:2677–2684

    Article  Google Scholar 

  • Latterini L, Amelia M (2009) Sensing proteins with luminescent silica nanoparticles. Langmuir 25:4767–4773

    Article  Google Scholar 

  • Liang J, Xue Z, Xu J, Li J, Zhang H, Yang W (2013) Highly efficient incorporation of amino-reactive dyes into silica particles by a multi-step approach. Colloids Surf A 426:33–38

    Article  Google Scholar 

  • Liong M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    Article  Google Scholar 

  • Lu C-W et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7:149–154

    Article  Google Scholar 

  • Lu F, Wu S-H, Hung Y, Mou C-Y (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Article  Google Scholar 

  • Nakamura M, Shono M, Ishimura K (2007) Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles. Anal Chem 79:6507–6514

    Article  Google Scholar 

  • Nan A, Bai X, Son S, Lee S, Ghandehari H (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano Lett 8:2150–2154

    Article  Google Scholar 

  • Nooney R, McCahey C, Stranik O, Guevel X, McDonagh C, MacCraith B (2009) Experimental and theoretical studies of the optimisation of fluorescence from near-infrared dye-doped silica nanoparticles. Anal Bioanal Chem 393:1143–1149

    Article  Google Scholar 

  • Parks G (1965) The isoelectric point of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198

    Article  Google Scholar 

  • Peng J, He X, Wang K, Tan W, Wang Y, Liu Y (2007) Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388:645–654

    Article  Google Scholar 

  • Qian J, Li X, Wei M, Gao X, Xu Z, He S (2008) Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging. Opt Express 16:19568–19578

    Article  Google Scholar 

  • Rosenholm J, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities & challenges. Nanoscale 2:1870–1883

    Article  Google Scholar 

  • Shi H, He X, Yuan Y, Wang K, Liu D (2010) Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. Anal Chem 82:2213–2220

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Tansub W, Tuitemwong K, Limsuwan P, Theparoonrat S, Tuitemwong P (2012) Synthesis of antibodies-conjugated fluorescent dye-doped silica nanoparticles for a rapid single step detection of Campylobacter jejuni in live poultry. J Nanomater 2012:60

  • Tao G, Chen Q, Yang X, Zhao K, Gao J (2011) Targeting cancer cells through iron(III) complexes of di(picolyl)amine modified silica core–shell nanospheres. Colloids Surf B 86:106–110

    Article  Google Scholar 

  • van Blaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8:2921–2931

    Article  Google Scholar 

  • van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. Colloid Interface Sci 156:1–18

    Article  Google Scholar 

  • Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci 360:1–7

    Article  Google Scholar 

  • Xia T et al (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  Google Scholar 

  • Yokoi T et al (2009) Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chem Mater 21:3719–3729

    Article  Google Scholar 

  • Yokoi T, Karouji T, Ohta S, Kondo J, Tatsumi T (2010) Synthesis of mesoporous silica nanospheres promoted by basic amino acids and their catalytic application. Chem Mater 22:3900–3908

    Article  Google Scholar 

  • Zhao X, Bagwe R, Tan W (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173–176

    Article  Google Scholar 

  • Zhao B, Yin J, Bilski P, Chignell C, Roberts J, He Y (2009) Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol 241:163–172

    Article  Google Scholar 

Download references

Acknowledgments

We greatly thank Dr. Jan Köser of Zentrale Analytik, University of Bremen for DLS measurements, Eike Volkmann and Tobias Bollhorst of Advanced Ceramics, University Bremen for helping with statistical analysis and for scientific discussion, respectively. This work was supported by the European Research Council within the SIRG Project “BiocerEng” Project No. 205509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Treccani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabi, S., Treccani, L. & Rezwan, K. Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies. J Nanopart Res 17, 270 (2015). https://doi.org/10.1007/s11051-015-3072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3072-8

Keywords

Navigation