Skip to main content
Log in

Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30–130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[18F]fluorobenzoate and thus anchor the 18F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 25:2265–2284

    Article  Google Scholar 

  • Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154

    Article  Google Scholar 

  • Borchardt G, Brandriss S, Kreuter J, Margel S (1994) Body distribution of 75Se-radiolabeled silica nanoparticles covalently coated with omega-functionalized surfactants after intravenous injection in rats. J Drug Target 2:61–77

    Article  Google Scholar 

  • Botella P, Abasolo I, Fernandez Y, Muniesa C, Miranda S, Quesada M, Ruiz J, Schwartz S, Corma A (2011) Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. J Control Release 156:246–257

    Article  Google Scholar 

  • Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, Theuer CP, Barnhart TE, Cai W (2014) Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep 4:5080

    Google Scholar 

  • Crommelin DJA, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454:496–511

    Article  Google Scholar 

  • Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:1521–1532

    Article  Google Scholar 

  • Etgar L, Schuchardt G, Costenaro D, Carniato F, Bisio C, Zakeeruddin SM, Nazeeruddin MK, Marchese L, Graetzel M (2013) Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. J Mater Chem A 1:10142–10147

    Article  Google Scholar 

  • Guadagnini R, Moreau K, Hussain S, Marano F, Boland S (2013) Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. doi:10.3109/17435390.2013.855830

    Google Scholar 

  • Guerrero S, Herance JR, Rojas S, Mena JF, Gispert JD, Acosta GA, Albericio F, Kogan MJ (2012) Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 23:399–408

    Article  Google Scholar 

  • Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F (2011) The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5:5390–5399

    Article  Google Scholar 

  • Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641

    Article  Google Scholar 

  • Karmani L, Labar D, Valembois V, Bouchat V, Nagaswaran PG, Bol A, Gillart J, Leveque P, Bouzin C, Bonifazi D, Michiels C, Feron O, Gregoire V, Lucas S, Van der Borght T, Gallez B (2013) Antibody-functionalized nanoparticles for imaging cancer: influence of conjugation to gold nanoparticles on the biodistribution of 89Zr-labeled cetuximab in mice. Contrast Media Mol Imaging 8:402–408

    Article  Google Scholar 

  • Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    Article  Google Scholar 

  • Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708

    Article  Google Scholar 

  • Lavik E, von Recum H (2011) The role of nanomaterials in translational medicine. ACS Nano 5:3419–3424

    Article  Google Scholar 

  • Lee SB, Kim HL, Jeong HJ, Lim ST, Sohn MH, Kim DW (2013) Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew Chem Int Ed Engl 52:10549–10552

    Article  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  Google Scholar 

  • Mading P, Fuchtner F, Wust F (2005) Module-assisted synthesis of the bifunctional labelling agent N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB). Appl Radiat Isot 63:329–332

    Article  Google Scholar 

  • Malfatti MA, Palko HA, Kuhn EA, Turteltaub KW (2012) Determining the pharmacokinetics and long-term biodistribution of SiO2 nanoparticles in vivo using accelerator mass spectrometry. Nano Lett 12:5532–5538

    Article  Google Scholar 

  • Martin R, Alvaro M, Herance JR, Garcia H (2010a) Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4:65–74

    Article  Google Scholar 

  • Martin R, Menchon C, Apostolova N, Victor VM, Alvaro M, Herance JR, Garcia H (2010b) Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano 4:6957–6965

    Article  Google Scholar 

  • Menchon C, Martin R, Apostolova N, Victor VM, Alvaro M, Herance JR, Garcia H (2012) Gold nanoparticles supported on nanoparticulate ceria as a powerful agent against intracellular oxidative stress. Small 8:1895–1903

    Article  Google Scholar 

  • Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144

    Article  Google Scholar 

  • Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Linden M (2014) Synthesis, characterization, and biodistribution of multiple (89)Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 6:4928–4935

    Article  Google Scholar 

  • Moros M, Mitchell SG, Grazu V, de la Fuente JM (2013) The fate of nanocarriers as nanomedicines in vivo: important considerations and biological barriers to overcome. Curr Med Chem 20:2759–2778

    Article  Google Scholar 

  • Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235

    Article  Google Scholar 

  • Rojas S, Gispert JD, Martin R, Abad S, Menchon C, Pareto D, Victor VM, Alvaro M, Garcia H, Herance JR (2011) Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS Nano 5:5552–5559

    Article  Google Scholar 

  • Rojas S, Gispert JD, Abad S, Buaki-Sogo M, Victor VM, Garcia H, Herance JR (2012) In vivo biodistribution of amino-functionalized ceria nanoparticles in rats using positron emission tomography. Mol Pharm 9:3543–3550

    Article  Google Scholar 

  • Sakai N, Takakura M, Imamura H, Sugimoto M, Matsui Y, Miyoshi H, Nakayama A, Yoneda M (2012) Whole-body distribution of 14C-labeled silica nanoparticles and submicron particles after intravenous injection into Mice. J Nanopart Res 14:1–11

    Article  Google Scholar 

  • Sarparanta M, Makila E, Heikkila T, Salonen J, Kukk E, Lehto VP, Santos HA, Hirvonen J, Airaksinen AJ (2011) (18)F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806

    Article  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24:621–638

    Article  Google Scholar 

  • Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F (2012) Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res 745:11–20

    Article  Google Scholar 

  • Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2014) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. doi:10.1016/j.nano.2014.09.014

    Google Scholar 

  • Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875

    Article  Google Scholar 

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84:183–190

    Article  Google Scholar 

Download references

Acknowledgments

The present work was supported by the grant Nos. CP13/00252 and CP10/036 from Carlos III Health Institute. In addition, this study was financed by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315), the Generalitat Valenciana (Prometeo 2012-013) and CDTI, under the CENIT Programme (AMIT Project) and supported by the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hermenegildo García or José Raúl Herance.

Additional information

Santiago Rojas and Juan Domingo Gispert have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, S., Gispert, J.D., Menchón, C. et al. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography. J Nanopart Res 17, 131 (2015). https://doi.org/10.1007/s11051-015-2938-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2938-0

Keywords

Navigation