Skip to main content

Advertisement

Log in

Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Novel titanium oxide (TiO2) nanoparticles were fabricated via a modified propanol drying step. These nanoparticles were loaded with anti-cancer drug paclitaxel (PTX) to yield PTX-TiO2 nanocomposites. The nanocomposites were characterized for their size and surface morphology employing nanoparticle tracking analysis (NTA) and scanning electron microscopy (SEM). The SEM images showed spherical particles with smooth surface and narrow size distribution of ~30–40 nm, which was also supported by NTA analysis data. The drug loading efficiency of the air-dried nanoparticles was observed to be ~63.61 % while those prepared through propanol-induced drying step showed ~69.70 %, thereby demonstrating higher efficiency of the latter. In vitro pH-dependent release of the loaded PTX was observed with higher release at acidic pH compared with physiological pH. Cell uptake studies suggested of time-dependent internalization of nanocomposites with significant improvement in uptake by increasing incubation time from 2 to 24 h, as evidenced by flow cytometry. Further, the cell viability as a measure of anti-cancer activity revealed that cell viability upon exposure to PTX only was 40.5 % while that of PTX-TiO2 nanocomposite showed 21.6 % viability after 24 h, suggesting better anti-cancer efficacy of nanocomposites. Apoptosis studies revealed that cells treated with PTX-TiO2 nanocomposites possessed more amount of apoptotic bodies as compared to those treated with PTX only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259. doi:10.1007/s11095-010-0318-0

    Article  Google Scholar 

  • Chen Y, Zheng X, Qian H, Mao Z, Ding D, Jiang X (2010) Hollow core-porous shell structure poly(acrylic acid) nanogels with a superhigh capacity of drug loading. ACS Appl Mater Interfaces 2:3532–3538. doi:10.1021/am100709d

    Article  Google Scholar 

  • Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391. doi:10.1038/nnano.2011.58

    Article  Google Scholar 

  • Constantine GD, Pickar JH (2003) Estrogens in postmenopausal women: recent insights. Curr Opin Pharmacol 3:626–634. doi:10.1016/j.coph.2003.07.003

    Article  Google Scholar 

  • Eisenhauer EA, Vermorken JB (1998) The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 55:5–30

    Article  Google Scholar 

  • Emerich DF, Thanos CG (2007) Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target 15:163–183. doi:10.1080/10611860701231810

    Article  Google Scholar 

  • Fan W (1999) Possible mechanism of paclitaxel-induced apoptosis. Biochem Pharmacol 57:1215–1221. doi:10.1016/S0006-2952(99)00006-4

    Article  Google Scholar 

  • Hankinson S, Colditz G, Willett W (2004) Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res 6:1–6. doi:10.1186/bcr921

    Article  Google Scholar 

  • Jemal A et al (2005) Cancer Statistics, 2005. CA Cancer J Clin 55:10–30. doi:10.3322/canjclin.55.1.10

    Article  Google Scholar 

  • Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150 doi:http://www.nature.com/nnano/journal/v3/n3/suppinfo/nnano.2008.30_S1.html

  • Jordan MA, Wilson L (1998) Chapter 15 the use and action of drugs in analyzing mitosis. In: Conly LR (ed) Methods in cell biology, vol 61. Academic Press, New York, pp 267–295. doi:10.1016/S0091-679X(08)61986-X

    Google Scholar 

  • Kocbek P, Teskac K, Kreft ME, Kristl J (2010) Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small 6:1908–1917. doi:10.1002/smll.201000032

    Article  Google Scholar 

  • Kolen’ko YV, Burukhin AA, Churagulov BR, Oleynikov NN (2003) Synthesis of nanocrystalline TiO2 powders from aqueous TiOSO4 solutions under hydrothermal conditions. Mater Lett 57:1124–1129

    Article  Google Scholar 

  • Kunjachan S et al (2012) Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur J Pharm Sci 45:421–428. doi:10.1016/j.ejps.2011.08.028

    Article  Google Scholar 

  • Lammel AS, Hu X, Park SH, Kaplan DL, Scheibel TR (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31:4583–4591. doi:10.1016/j.biomaterials.2010.02.024

    Article  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4

  • Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30:5757–5766. doi:10.1016/j.biomaterials.2009.07.020

    Article  Google Scholar 

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670. doi:10.1016/j.addr.2006.09.020

    Article  Google Scholar 

  • Seo J, Dembereldorj U, Park J, Kim M, Kim S, Joo S-W (2012) Facile internalization of paclitaxel on titania nanoparticles in human lung carcinoma cells after adsorption of serum proteins. J Nanopart Res 14:1–8. doi:10.1007/s11051-012-1164-2

    Google Scholar 

  • Syres K, Thomas A, Bondino F, Malvestuto M, Gratzel M (2010) Dopamine adsorption on anatase TiO2(101): a photoemission and NEXAFS spectroscopy study. Langmuir 26:14548–14555. doi:10.1021/la1016092

    Article  Google Scholar 

  • Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR (2008) Induction of cell death by TiO2 nanoparticles: studies on a human monoblastoid cell line. Toxicol In Vitro 22:1689–1696. doi:10.1016/j.tiv.2008.07.002

    Article  Google Scholar 

  • Verwey EJW, Overbeek JTG, Van Nes K (1948) Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Elsevier, New York

    Google Scholar 

  • Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. J Control Release 68:419–431

    Article  Google Scholar 

  • Zhang H, Jiang H, Wang H, Zhao J, Chen B, Wang X (2011) Ultrasound mediated drug-loaded nanoparticles crossing cell membranes as a new strategy to reverse cancer multidrug resistance. J Nanosci Nanotechnol 11:1834–1840

    Article  Google Scholar 

  • Zhang H, Wang C, Chen B, Wang X (2012) Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomedicine 7:235–242. doi:10.2147/IJN.S27722

    Google Scholar 

Download references

Acknowledgments

The authors highly appreciate the support of Director of NIT, Rourkela for funding and Mr L. B. Sukla, Chief Scientist IMMT, Bhubaneswar for providing the lab facility to carry out certain portion of the research work.

Conflict of interest

The authors hereby declare no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mund, R., Panda, N., Nimesh, S. et al. Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells. J Nanopart Res 16, 2739 (2014). https://doi.org/10.1007/s11051-014-2739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2739-x

Keywords

Navigation