Skip to main content
Log in

Electropreconcentration of nanoparticles using a radial micro-nanofluidic device

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We have developed a radial silicon micro-nanofluidic device in order to investigate strong nanoparticles electropreconcentration. The device is called “ring like” device and exhibits a circular micro-nanojunction. Hundred-nanometer-deep radial nanochannels were fabricated using standard photolithography and etching techniques. Ion permselectivity is one of the major proprieties of nanofluidic devices. Within the influence of an electric field through an ion-selective nanochannel, nanoparticle repulsion and concentration appear at the anodic and cathodic side, respectively. Here, the cathodic preconcentration is exploited to enriched 50-nm nanoparticles samples. Up to 800, enrichment factor is reached in 1 h of experiment. This scheme could be useful for the enrichment of bionanoparticles (such as viruses or exosomes for instance) which can be critical for several biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aïzel K, Agache V, Pudda C et al (2013) Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device. Lab Chip 13:4476. doi:10.1039/c3lc50835h

    Article  Google Scholar 

  • Bocquet L, Charlaix E (2010) Nanofluidics, from bulk to interfaces. Chem Soc Rev 39:1073–1095

    Article  Google Scholar 

  • Burg TP, Godin M, Knudsen SM et al (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069

    Article  Google Scholar 

  • Cooksey GA, Sip CG, Folch A (2008) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9:417–426

    Article  Google Scholar 

  • Engelmann I, Petzold D, Kosinska A et al (2008) Rapid quantitative PCR assays for the simultaneous detection of herpes simplex virus, varicella zoster virus, cytomegalovirus, Epstein–Barr virus, and human herpesvirus 6 DNA in blood and other clinical specimens. J Med Virol 80:467–477

    Article  Google Scholar 

  • Fraikin JL, Teesalu T, McKenney CM et al (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6:308–313

    Article  Google Scholar 

  • Hamblin MN, Xuan J, Maynes D et al (2009) Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab Chip 10:173–178

    Article  Google Scholar 

  • Hazelton PR, Gelderblom HR (2003) Electron microscopy for rapid diagnosis of emerging infectious agents. Emerg Infect Dis 9:294

    Article  Google Scholar 

  • Ignatovich FV, Novotny L (2006) Real-time and background-free detection of nanoscale particles. Phys Rev Lett 96:13901

    Article  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114. doi:10.1063/1.2186967

    Article  Google Scholar 

  • Karnik R, Duan C, Castelino K et al (2007) Rectification of ionic current in a nanofluidic diode. Nano Lett 7:547–551. doi:10.1021/nl062806o

    Article  Google Scholar 

  • Kim SJ, Han J (2008) Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Anal Chem 80:3507–3511

    Article  Google Scholar 

  • Kim SJ, Li LD, Han J (2009) Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir 25:7759–7765. doi:10.1021/la900332v

    Article  Google Scholar 

  • Kutchoukov VG, Laugere F, van Der Vlist W et al (2004) Fabrication of nanofluidic devices using glass-to-glass anodic bonding. Sens Actuators A 114:521–527

    Article  Google Scholar 

  • Lee JH, Song Y-A, Han J (2008a) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8:596. doi:10.1039/b717900f

    Article  Google Scholar 

  • Lee JH, Song YA, Tannenbaum SR, Han J (2008b) Increase of reaction rate and sensitivity of low-abundance enzyme assay using micro/nanofluidic preconcentration chip. Anal Chem 80:3198–3204

    Article  Google Scholar 

  • Lee JH, Cosgrove BD, Lauffenburger DA, Han J (2009) Microfluidic concentration-enhanced cellular kinase activity assay. J Am Chem Soc 131:10340–10341

    Article  Google Scholar 

  • Li J, Gershow M, Stein D et al (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615. doi:10.1038/nmat965

    Article  Google Scholar 

  • Mao X, Reschke BR, Timperman AT (2010) Analyte transport past a nanofluidic intermediate electrode junction in a microfluidic device. Electrophoresis 31:2686–2694

    Article  Google Scholar 

  • Miller SA, Kelly KC, Timperman AT (2008) Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system. Lab Chip 8:1729. doi:10.1039/b808179d

    Article  Google Scholar 

  • Mitra A, Deutsch B, Ignatovich F et al (2010) Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 4:1305–1312

    Article  Google Scholar 

  • Mitra A, Ignatovich F, Novotny L (2011) Real-time optical detection of single human and bacterial viruses based on dark-field interferometry. Biosens Bioelectron 31:499–504

    Article  Google Scholar 

  • Mitra A, Ignatovich F, Novotny L (2012) Nanofluidic preconcentration and detection of nanoparticles. J Appl Phys 112:014304

    Article  Google Scholar 

  • Persson F, Fritzsche J, Mir KU et al (2012) Lipid-based passivation in nanofluidics. Nano Lett 12:2260

    Article  Google Scholar 

  • Plecis A, Nanteuil C, Haghiri-Gosnet AM, Chen Y (2008) Electropreconcentration with charge-selective nanochannels. Anal Chem 80:9542–9550

    Article  Google Scholar 

  • Pu Q, Yun J, Temkin H, Liu S (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103

    Article  Google Scholar 

  • Salieb-Beugelaar GB, Teapal J, Nieuwkasteele J et al (2008) Field-dependent DNA mobility in 20 nm high nanoslits. Nano Lett 8:1785–1790

    Article  Google Scholar 

  • Scarff B, Escobedo C, Sinton D (2011) Radial sample preconcentration. Lab Chip 11:1102–1109

    Article  Google Scholar 

  • Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839

    Article  Google Scholar 

  • Shao H, Chung J, Balaj L et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840

    Article  Google Scholar 

  • Stavis SM, Geist J, Gaitan M (2010) Separation and metrology of nanoparticles by nanofluidic size exclusion. Lab Chip 10:2618. doi:10.1039/c0lc00029a

    Article  Google Scholar 

  • Storm A, Chen J, Zandbergen H, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E. doi:10.1103/PhysRevE.71.051903

    Google Scholar 

  • Tegenfeldt JO, Prinz C, Huang RL et al (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692. doi:10.1007/s00216-004-2526-0

    Article  Google Scholar 

  • Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556. doi:10.1021/nl062924b

    Article  Google Scholar 

  • Wang Y-C, Han J (2008) Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab Chip 8:392. doi:10.1039/b717220f

    Article  Google Scholar 

  • Wang Y-C, Stevens AL, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299. doi:10.1021/ac050321z

    Article  Google Scholar 

  • Xuan J, Hamblin MN, Stout JM et al (2011) Surfactant addition and alternating current electrophoretic oscillation during size fractionation of nanoparticles in channels with two or three different height segments. J Chromatogr 1218:9102–9110

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Micro Technologies for Biology and Healthcare of the Commissariat à l’Energie Atomique (CEA). This work has also been performed with the help of the “Plateforme Technologique Amont” de Grenoble, with the financial support of the “Nanosciences aux limites de la Nanoélectronique” Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Aïzel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 5800 kb)

Supplementary material 2 (MPG 2900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aïzel, K., Fouillet, Y. & Pudda, C. Electropreconcentration of nanoparticles using a radial micro-nanofluidic device. J Nanopart Res 16, 2731 (2014). https://doi.org/10.1007/s11051-014-2731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2731-5

Keywords

Navigation