Skip to main content
Log in

Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The present study focused on photocatalytic oxidation of methanol to formaldehyde using nanocrystalline TiO2 (Degussa P-25) photocatalyst calcined at different temperature having different ratio of anatase (A)–rutile (R) phase composition under direct sunlight irradiation. The calcined nanocrystalline TiO2 was characterized using powder X-ray diffraction, N2 adsorption, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and UV–Visible diffuse reflectance spectroscopy techniques. The determination of hydroxyl radical formation during the course of the reaction was carried out using fluorescence technique with terephthalic acid as a probe molecule. The photocatalytic activity of catalysts was evaluated by methanol oxidation under direct sunlight irradiation and activity was compared with pure anatase TiO2. The result revealed that nanocrystalline TiO2 (P-25) calcined at 500 °C displays higher photocatalytic activity and the order of rate of HCHO formation is P25-500 (A74 %:R26 %) > P25 (A80 %:R20 %) > AT (A100 %) > P25-600 (A12 %:R88 %) > P25-700 (R100 %). The result also infers that TiO2 with mixed phase exhibit higher photocatalytic activity than TiO2 with pure anatase or rutile phase. The rapid transfer of photogenerated electron from rutile to anatase leads to increase in the charge separation and enhances the photocatalytic activity under direct sunlight irradiation. Effect of operational parameters like amount of catalyst and effect of reaction atmosphere have been investigated on the photocatalytic oxidation of methanol under direct sunlight irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585

    Article  Google Scholar 

  • Bickley RI, Gonzalezcarreno T, Lees JS, Palmisano L, Tilley RJD (1991) A structural investigation of titanium-dioxide photocatalysts. J Solid State Chem 92:178–190

    Article  Google Scholar 

  • Carlson T, Griffin GL (1986) Photooxidation of methanol using vanadium pentoxide/titanium dioxide and molybdenum trioxide/titanium dioxide surface oxide monolayer catalysts. J Phys Chem 90:5896–5900

    Article  Google Scholar 

  • Chen J, Ollis DF, Rulkens WH, Bruning H (1999a) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I): photocatalytic activity and pH influence. Water Res 33:661–668

    Article  Google Scholar 

  • Chen J, Ollis DF, Rulkens WH, Bruning H (1999b) Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): photocatalytic mechanisms. Water Res 33:669–676

    Article  Google Scholar 

  • Cong S, Xu YM (2011) Explaining the high photocatalytic activity of a mixed phase TiO2: a combined effect of O2 and crystallinity. J Phys Chem C 115:21161–21168

    Article  Google Scholar 

  • Emeline AV, Smirnova LG, Kuzmin GN, Basov LL, Serpone N (2002) Spectral dependence of quantum yields in gas–solid heterogeneous photosystems: Influence of anatase/rutile content on the photostimulated adsorption of dioxygen and dihydrogen on titania. J Photochem Photobiol A 148:97–102

    Article  Google Scholar 

  • Galian RE, Perez-Prieto J (2010) Catalytic processes activated by light. Energy Environ Sci 3:1488–1498

    Article  Google Scholar 

  • Goldstein S, Behar D, Rabani J (2008) Mechanism of visible light photocatalytic oxidation of methanol in aerated aqueous suspensions of carbon-doped TiO2. J Phys Chem C 112:15134–15139

    Article  Google Scholar 

  • Gorska P, Zaleska A, Kowalska E, Klimczuk T, Sobczak JW, Skwarek E, Janusz W, Hupka J (2008) TiO2 photoactivity in vis and UV light: the influence of calcination temperature and surface properties. Appl Catal B Environ 84:440–447

    Article  Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549

    Article  Google Scholar 

  • Hurum DC, Gray KA, Rajh T, Thurnauer MC (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109:977–980

    Article  Google Scholar 

  • Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210

    Article  Google Scholar 

  • Ismail AA (2012) Mesoporous PdO–TiO2 nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 117–118:67–72

    Article  Google Scholar 

  • Ismail AA, Bahnemann DW (2011) One-step synthesis of mesoporous platinum/titania nanocomposites as photocatalyst with enhanced photocatalytic activity for methanol oxidation. Green Chem 13:428–435

    Article  Google Scholar 

  • Ismail AA, Bahnemann DW, Bannat I, Wark M (2009) Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies. J Phys Chem C 113:7429–7435

    Article  Google Scholar 

  • Ismail AA, Bahnemann DW, Robben L, Yarovyi V, Wark M (2010) Palladium doped porous titania photocatalysts: impact of mesoporous order and crystallinity. Chem Mater 22:108–116

    Article  Google Scholar 

  • Ismail AA, Robben L, Bahnemann DW (2011) Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2–TiO2 nanocomposites. Chem Phys Chem 12:982–991

    Google Scholar 

  • Ismail AA, Al-Sayari SA, Bahnemann DW (2013) Photodeposition of precious metals onto mesoporous TiO2 nanocrystals with enhanced their photocatalytic activity for methanol oxidation. Catal Today 209:2–7

    Article  Google Scholar 

  • Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186

    Article  Google Scholar 

  • Jiang X, Zhang Y, Jiang J, Rong Y, Wang Y, Wu Y, Pan C (2012) Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J Phys Chem C 116:22619–22624

    Article  Google Scholar 

  • Leytner S, Hupp JT (2000) Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy. Chem Phys Lett 330:231–236

    Article  Google Scholar 

  • Liao JQ, Huang BY (2001) Particle size characterization of ultrafine tungsten powder. Int J Refract Met Hard Mater 19:89–99

    Article  Google Scholar 

  • Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–738

    Article  Google Scholar 

  • Lira E, Wendt S, Huo P, Hansen J, Streber R, Porsgaard S, Wei Y, Bechstein R, Lægsgaard E, Besenbacher F (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133:6529–6532

    Article  Google Scholar 

  • Liu ZY, Zhang XT, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2007) Anatase TiO2 nanoparticles on rutile TiO2 nanorods: a heterogeneous nanostructure via layer-by-layer assembly. Langmuir 23:10916–10919

    Article  Google Scholar 

  • Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A 152:233–247

    Article  Google Scholar 

  • Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  Google Scholar 

  • Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    Google Scholar 

  • Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ (2013) Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15(5):1–18

    Article  Google Scholar 

  • Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J Hazard Mater 89:303–317

    Article  Google Scholar 

  • Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energy Rev 11:401–425

    Article  Google Scholar 

  • Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86

    Article  Google Scholar 

  • Palmisano G, Garcia-Lopez E, Marci G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 46:7074–7089

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  Google Scholar 

  • Qin X, Jing LQ, Tian GH, Qu YC, Feng YJ (2009) Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms. J Hazard Mater 172:1168–1174

    Article  Google Scholar 

  • Raj KJA, Viswanathan B (2009) Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian J Chem A 48:1378–1382

    Google Scholar 

  • Riegel G, Bolton JR (1995) Photocatalytic efficiency variability in TiO2 particles. J Phys Chem 99:4215–4224

    Article  Google Scholar 

  • Sato S, Kadowaki T, Yamaguti K (1984) Photocatalytic oxygen isotopic exchange between oxygen molecule and the lattice oxygen of TiO2 prepared from titanium hydroxide. J Phys Chem 88:2930–2931

    Article  Google Scholar 

  • Shannon RD, Pask JA (1965) Kinetics of the anatase–rutile transformation. J Am Ceram Soc 48:391–398

    Article  Google Scholar 

  • Sheldon RA, Arends IWCE, Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57:157–166

    Article  Google Scholar 

  • Sheldon RA, Arends IWCE, Ten Brink GJ, Dijksman A (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781

    Article  Google Scholar 

  • Shiraishi Y, Hirai T (2008) Selective organic transformations on titanium oxide-based photocatalysts. J Photochem Photobiol C 9:157–170

    Article  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Stafford U, Gray KA, Kamat PV, Varma A (1993) An Insitu Diffuse Reflectance FTIR Investigation of Photocatalytic Degradation of 4-Chlorophenol on a TiO2 Powder Surface. Chem Phys Lett 205:55–61

    Article  Google Scholar 

  • Su C, Hong BY, Tseng CM (2004) Sol–gel preparation and photocatalysis of titanium dioxide. Catal Today 96:119–126

    Article  Google Scholar 

  • Sun QO, Xu YM (2010) Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J Phys Chem C 114:18911–18918

    Article  Google Scholar 

  • Tayade RJ, Kulkarni RG, Jasra RV (2006) Photocatalytic degradation of aqueous nitrobenzene by nanocrystalline TiO2. Ind Eng Chem Res 45:922–927

    Article  Google Scholar 

  • Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462

    Article  Google Scholar 

  • Tayade RJ, Bajaj HC, Jasra RV (2011) Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts. Desalination 275:160–165

    Article  Google Scholar 

  • Thompson TL, Yates JT (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35:197–210

    Article  Google Scholar 

  • Wang CY, Rabani J, Bahnemann DW, Dohrmann JK (2002) Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts. J Photochem Photobiol A 148:169–176

    Article  Google Scholar 

  • Wang GH, Xu L, Zhang J, Yin T, Han D (2012) Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment, Int J Photoenergy, Article ID 265760

  • Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102:5845–5851

    Article  Google Scholar 

  • Xiao Q, Ouyang LL (2009) Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem Eng J 148:248–253

    Article  Google Scholar 

  • Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  Google Scholar 

  • Xu YM, Langford CH (2011) UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: the influence of adsorption. Langmuir 17:897–902

    Article  Google Scholar 

  • Yamashita H, Harada M, Misaka J, Takeuchi M, Ichihashi Y, Goto F, Ishida M, Sasaki T, Anpo M (2001) Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method. J Synchrotron Radiat 8:569–571

    Article  Google Scholar 

  • Yan J, Wu G, Guan N, Li L, Li Z, Cao X (2013) Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys Chem Chem Phys 15:10978–10988

    Article  Google Scholar 

  • Yu JG, Wang WG, Cheng B, Su BL (2009) Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J Phys Chem C 113:6743–6750

    Article  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No. PRIS/154/2013. Authors are thankful to CSIR, New Delhi, India, for funding through Network Project on “Clean Coal Technologies (TapCoal)” (Project Number: CSC-0102). T S Natarajan thanks to CSIR, New Delhi for Senior Research Fellowship (File No: 31/28(162)/2012-EMR-I) and to AcSIR for enrolment in Ph.D. We also thankful to Analytical Discipline and Centralized Instrument Facility of the institute and Mr. Jayesh C. Chaudhari, Mr. Gopala Ram, Mr. V. K. Agarwal and Mr. K. Munusamy for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh J. Tayade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natarajan, T.S., Bajaj, H.C. & Tayade, R.J. Enhanced direct sunlight photocatalytic oxidation of methanol using nanocrystalline TiO2 calcined at different temperature. J Nanopart Res 16, 2713 (2014). https://doi.org/10.1007/s11051-014-2713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2713-7

Keywords

Navigation