Skip to main content
Log in

Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Particle-tracking analysis (PTA) in combination with systematic imaging, automatic image analysis, and automatic data processing is validated for size measurements. Transmission electron microscopy (TEM) in combination with a systematic selection procedure for unbiased random image collection, semiautomatic image analysis, and data processing is validated for size, shape, and surface topology measurements. PTA is investigated as an alternative for TEM for the determination of the particle size in the framework of the EC definition of nanomaterial. The intra-laboratory validation study assessing the precision and accuracy of the TEM and PTA methods consists of series of measurements on three gold reference materials with mean area-equivalent circular diameters of 8.9 nm (RM-8011), 27.6 nm (RM-8012), and 56.0 nm (RM-8013), and two polystyrene materials with modal hydrodynamic diameters of 102 nm (P1) and 202 nm (H1). By obtaining a high level of automation, PTA proves to give precise and non-biased results for the modal hydrodynamic diameter in size range between 30 and 200 nm, and TEM proves to give precise and non-biased results for the mean area-equivalent circular diameter in the size range between 8 and 200 nm of the investigated near-monomodal near-spherical materials. The expanded uncertainties of PTA are about 9 % and are determined mainly by the repeatability uncertainty. This uncertainty is two times higher than the expanded uncertainty of 4 % obtained by TEM for analyses on identical materials. For the investigated near-monomodal and near-spherical materials, PTA can be used as an alternative to TEM for measuring the particle size, with exception of 8.9 nm gold, because this material has a size below the detection limit of PTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405(0):322–330. doi:10.1016/j.jcis.2013.02.030

  • ASTM E766-98(2008)e1 (2008) Standard practice for calibrating the magnification of a scanning electron microscope. Am Soc Test Mater USA. doi:10.1520/E0766-98R08E01

  • ASTM E2834-12 (2012) Standard guide for measurement of particle size distribution of nanomaterials in suspension by nanoparticle tracking analysis (NTA). Am Soc Test Mater USA. doi:10.1520/E2834-12

  • Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci Process Impacts. doi:10.1039/c3em00712j

  • Bell NC, Minelli C, Tompkins J, Stevens MM, Shard AG (2012) Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 28(29):10860–10872. doi:10.1021/la301351k

  • Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011a) Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv Powder Technol 22(6):766–770. doi:10.1016/j.apt.2010.11.001

  • Braun A, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TPJ (2011b) Certified Reference material ERM®- FD100: certification of equivalent spherical diameters of silica nanoparticles in water. Report EUR 25018 EN. European Union, Luxembourg. doi:10.2787/33725

  • Brown SC, Boyko V, Meyers G, Voetz M, Wohlleben W (2013) Toward advancing nano-object count metrology: a best practice framework. Environ Health Perspect 121(10–12):1282–1291. doi:10.1289/ehp.1306957

  • Carr B, Wright M (2013) Nanoparticle Tracking analysis: a review of applications and usage 2010–2012. NanoSight Ltd, Wiltshire

    Google Scholar 

  • De Temmerman P-J, Van Doren E, Verleysen E, Van der Stede Y, Francisco M, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotechnol 10(24). doi:10.1186/1477-3155-10-24

  • De Temmerman P-J, Lammertyn J, De Ketelaere B, Kestens V, Roebben G, Verleysen E, Mast J (2013) Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J Nanopart Res 16(1):1–22. doi:10.1007/s11051-013-2177-1

  • De Temmerman P-J, Verleysen E, Lammertyn J, Mast J (2014) Semi-automatic size measurements of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol 261(July):191–200. doi:10.1016/j.powtec.2014.04.040

  • EC (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union (275):38–40

  • FEI (2012) Tecnai on-line help manual—options. http://www4.utsouthwestern.edu/mcif/manuals/tecnai/Options.pdf

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. doi:10.1007/s11095-010-0073-2

  • Franks K, Braun A, Charoud-Got J, Couteau O, Kestens V, Lamberty A, Linsinger TPJ, Roebben G (2012) Certified reference material ERM®-FD304: certification of the equivalent spherical diameters of silica nanoparticles in aqueous solution. EUR 24620 EN. European Union, Luxembourg. doi:10.2787/53476

  • Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2. doi:10.3402/jev.v2i0.19671

  • Hole P, Sillence K, Hannell C, Maguire C, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A, Cooke L, Haase A, Contal S, Manø S, Vennemann A, Sauvain J–J, Staunton K, Anguissola S, Luch A, Dusinska M, Korenstein R, Gutleb A, Wiemann M, Prina-Mello A, Riediker M, Wick P (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15(12):1–12. doi:10.1007/s11051-013-2101-8

  • ISO 13322-1 (2004) Particle size analysis—image analysis methods. Part 1: Static image analysis methods. International Organization for Standardization, Geneva

  • ISO 9276-1 (1998) Representation of results of particle size analysis. Part 1: Graphical representation. International Organization for Standardization, Geneva

  • ISO 9276-3 (2008) Representation of results of particle size analysis. Part 3: Adjustment of an experimental curve to a reference model. International Organization for Standardization, Geneva

  • ISO TS 27687 (2008) Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplateInternational Organization for Standardization Geneva

  • ISO/IEC GUIDE 98-3 (2008) Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). International Organization for Standardization, Geneva

  • Kaiser DL, Watters RL (2007a) Reference material 8011: gold nanoparticles, nominal 10 nm diameter. Report of Investigation. National Institute of Standards & Technology, Gaitersburg

    Google Scholar 

  • Kaiser DL, Watters RL (2007b) Reference material 8012: gold nanoparticles, nominal 30 nm diameter. Report of investigation. National Institute of Standards & Technology, Gaitersburg

    Google Scholar 

  • Kaiser DL, Watters RL (2007c) Reference material 8013: gold nanoparticles, nominal 60 nm diameter. Report of investigation. National Institute of Standards & Technology, Gaitersburg

    Google Scholar 

  • Klein C, Comero S, Stahlmecke B, Romazanov J, Kuhlbusch T, Van Doren E, De Temmerman P-J, Mast J, Wick P, Krug H, Locoro G, Hund-Rinke K, Kördel W, Friedrichs S, Maier G, Werner J, Linsinger TPJ, Gawlik BM (2011) NM-series of representative manufactured nanomaterials: NM-300 silver characterisation, stability, homogeneity. EUR 24693 EN—2011. doi:10.2788/23079

  • Linsinger TPJ, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson N, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. EUR 25404 EN. doi:10.2787/63490

  • Mast J, Demeestere L (2009) Electron tomography of negatively stained complex viruses: application in their diagnosis. Diagn Pathol 4:5. doi:10.1186/1746-1596-4-5

  • Masuda H, Gotoh K (1999) Study on the sample size required for the estimation of mean particle diameter. Adv Powder Technol 10(2):159–173. doi:10.1163/156855299x00055

  • McCaffrey JP, Baribeau JM (1995) A transmission electron microscope (TEM) calibration standard sample for all magnification, camera constant, and image/diffraction pattern rotation calibrations. Microsc Res Tech 32(5):449-454. doi:10.1002/jemt.1070320507

  • Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer, Pijnacker. doi:10.1007/978-1-4020-9016-5

  • Motzkus C, Macé T, Gaie-Levrel F, Ducourtieux S, Delvallee A, Dirscherl K, Hodoroaba VD, Popov I, Popov O, Kuselman I, Takahata K, Ehara K, Ausset P, Maillé M, Michielsen N, Bondiguel S, Gensdarmes F, Morawska L, Johnson GR, Faghihi EM, Kim CS, Kim YH, Chu MC, Guardado JA, Salas A, Capannelli G, Costa C, Bostrom T, Jämting ÅK, Lawn MA, Adlem L, Vaslin-Reimann S (2013) Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J Nanopart Res 15(10):1–36. doi:10.1007/s11051-013-1919-4

  • Nanosight (2012) Nanosight: nanoparticle tracking analysis (NTA). http://www.nanosight.com/

  • Nanosight (2013) Nanosight NTA 2.3 analytical software. Operating manual. NanoSight Ltd., Wiltshire

  • Orji NG, Dixson RG, Garcia-Gutierrez DI, Bunday BD, Bishop M, Cresswell MW, Allen RA, Allgair JA (2007) TEM calibration methods for critical dimension standards. Proc SPIE 6518. doi:10.1117/12.713368

  • Polyanskiy M (2014) RefractiveIndex.Info. http://refractiveindex.info/

  • Pyrz WD, Buttrey DJ (2008) Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24(20):11350–11360. doi:10.1021/la801367j

  • Rice SB, Chan C, Brown SC, Eschbach P, Han L, Ensor DS, Stefaniak AB, Bonevich J, Vladár AE, Hight Walker AR, Zheng J, Starnes C, Stromberg A, Ye J, Grulke EA (2013) Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia 50(6):663. doi:10.1088/0026-1394/50/6/663

  • Roebben G, Rasmussen K, Kestens V, Linsinger TPJ, Rauscher H, Emons H, Stamm H (2013) Reference materials and representative test materials: the nanotechnology case. J Nanopart Res 15(3):1–13. doi:10.1007/s11051-013-1455-2

  • Roursgaard M, Jensen KA, Danielsen PH, Mikkelsen LÆ, Folkmann JK, Forchammer L, Jantzen K, Klingberg H, Cao Y, Loft S, Møller P (2014) Variability in particle size determination by nanoparticle tracking analysis. Adv Sci Eng Med 6:1–11. doi:10.1111/jth.12602

  • Russ JC (2011) The image processing handbook. CRC Press, Boca Raton. doi:10.1017/S1431927611012050

  • Saveyn H, De Baets B, Thas O, Hole P, Smith J, Van der Meeren P (2010) Accurate particle size distribution determination by nanoparticle tracking analysis based on 2D Brownian dynamics simulation. J Colloid Interface Sci 352(2):593–600. doi:10.1016/j.jcis.2010.09.006

  • Tsai DH, Delrio FW, Keene AM, Tyner KM, Maccuspie RI, Cho TJ, Zachariah MR, Hackley VA (2011) Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27:2464–2477. doi:10.1021/la104124d

  • Tuoriniemi J, Johnsson A-CJH, Perez Holmberg J, Gustafsson S, Gallego-Urrea JA, Olsson E, Pettersson JBC, Hassellöv M (2014) Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci Tech Adv Mater 15(3):035009. doi:10.1088/1468-6996/15/3/035009

  • Van der Meeren P, Kasinos M, Saveyn H (2012) Relevance of two-dimensional Brownian motion dynamics in applying nanoparticle tracking analysis. Methods Mol Biol 906:525–534. doi:10.1007/978-1-61779-953-2_42

  • Wojdyr M (2010) Fityk : a general-purpose peak fitting program. J Appl Cryst 43:1126–1128. doi:10.1107/S0021889810030499

  • Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. theory. analytical biochemistry 262(2):137–156. doi:10.1006/abio.1998.2759

Download references

Acknowledgments

Vikram Kestens (European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium) is acknowledged for critically reading and commenting on the paper. Elke Van Doren, Marina Ledecq, and Michel Abi Daoud Francisco (CODA-CERVA) are acknowledged for their expert technical assistance. The research leading to these results has been supported by the Nanokara project of CODA-CERVA and has been partially funded by the European Union Seventh Framework Programme (FP7/2007-2013) under the project NANoREG (A common European approach to the regulatory testing of nanomaterials), grant agreement 310584. This publication reflects only the author’s views, and the Community is not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter-Jan De Temmerman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal gold material RM-8011 (nominal size 30 nm)

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal gold material RM-8013 (nominal size 60 nm)

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal polystyrene material P1 (nominal size 100 nm)

Selected particle-tracking analysis movie of near-spherical near-monomodal colloidal polystyrene material H1 (nominal size 200 nm)

Annexure

Annexure

See Fig. 3 and Tables 6, 7.

Fig. 3
figure 3

Schematic overview of the experimental design

Table 6 Mean median values of 23 quantitative measurands and corresponding combined uncertainty (including repeatability, intermediate precision, and measurement uncertainty) for RM-8011, RM-8012, RM-8013, P1, and H1
Table 7 Normalized measured concentrations of RM-8012, RM8013, P1, and H1 at camera settings 1 through 16 by PTA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Temmerman, PJ., Verleysen, E., Lammertyn, J. et al. Size measurement uncertainties of near-monodisperse, near-spherical nanoparticles using transmission electron microscopy and particle-tracking analysis. J Nanopart Res 16, 2628 (2014). https://doi.org/10.1007/s11051-014-2628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2628-3

Keywords

Navigation