Skip to main content
Log in

Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study revealed not only the antibacterial potential of smaller chitosan–tripolyphosphate nanoparticles (CS–TPP NPs) over larger ones, but also the attempt has been made to demonstrate antibacterial mechanism of action of CS–TPP NPs on the bacterial cell membrane. Several aspects of low-molecular-weight (LMW) and high-molecular-weight (HMW) CS–TPP NPs were evaluated by their interactions with selected Gram-positive and Gram-negative bacteria. The interaction of CS–TPP NPs with synthetic phospholipid membranes was also evaluated using Fourier transform infrared spectroscopy. The permeabilities of the bacterial outer and inner membranes were evaluated by determining the uptake of a fluorescent probe, 1-N-phenylnaphthylamine, and the release of cytoplasmic β-galactosidase. The morphology of the bacteria treated with LMW and HMW CS–TPP NPs was investigated using transmission electron microscopy. Flow cytometric analysis was also performed for the quantification of dead and surviving bacteria. These studies indicated that the antibacterial effects of LMW CS–TPP NPs (196 and 394 nm) were superior to those HMW CS–TPP NPs (598 and 872 nm). These data indicated that the antibacterial activity of CS–TPP NPs was negatively correlated with particle size and molecular weight, and that CS–TPP NPs represent a promising antimicrobial adjunct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  Google Scholar 

  • Bae K, Jun EJ, Lee SM, Paik DI, Kim JB (2006) Effect of water-soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilm vitality. Clin Oral Investig 10:102–107

    Article  Google Scholar 

  • Berney M, Vital M, Hülshoff I, Weilenmann HU, Egli T, Hammes F (2008) Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 42:4010–4018

    Article  Google Scholar 

  • Boyd AR, Gunasekera TS, Attfield PV, Simic K, Vincent SF, Veal DA (2003) A flow cytometric method for the determination of yeast viability and cell number in a brewery. FEMS Yeast Res 3:11–16

    Article  Google Scholar 

  • Calvo P, Remu˜nán-López C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132

    Article  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  Google Scholar 

  • Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY (2001) In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agents 18:553–557

    Article  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JC (2004) Relationship between antibacterial activity of chitosan and surface characteristic of cell wall. Acta Phrmacol Sinc 27:932–936

    Google Scholar 

  • Cuero RG, Osuji G, Washington A (1991) N-carboxymethyl chitosan inhibition of aflatoxin production: role of zinc. Biotechnol Lett 13:441–444

    Article  Google Scholar 

  • Daugherty PS, Iverson BL, Georgiou G (2000) Flow cytometric screening of cell based libraries. J Immunol Methods 243:211–227

    Article  Google Scholar 

  • Didenko LV, Gerasimenko DV, Konstantinova ND, Silkina TA, Avdienko ID, Bannikova GE, Varlamov VP (2005) Ultrastructural study of chitosan effects on Klebsiella and Staphylococci. Bull Exp Biol Med 140:343–347

    Article  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75:385–389

    Article  Google Scholar 

  • Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces 90:21–27

    Article  Google Scholar 

  • Feldhaus M, Siegel R (2004) Flow cytometric screening of yeast surface display libraries. Methods Mol Biol 263:311–332

    Google Scholar 

  • Gomez-Fernandez JC, Villalain J (1998) The use of FT–IR for quantitative studies of the apparent pKa of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipids. Chem Phys Lipids 96:41–52

    Article  Google Scholar 

  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram negative bacteria. Int J Food Microbiol 71:235–244

    Article  Google Scholar 

  • Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAT-92) kills bacteria through a membrane damage mechanism. Biochim Biophys Acta 1523:196–205

    Article  Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 1–9. doi:10.1155/2012/632698

  • Jeon YJ, Kim SK (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54(18):6629–6633

    Article  Google Scholar 

  • Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr Polym 44:71–76

    Article  Google Scholar 

  • Jia Z, Shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salts of chitosan. Carbohydr Res 333:1–6

    Article  Google Scholar 

  • Jung KW, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake. Eur J Pharm Biopharm 50:147–160

    Article  Google Scholar 

  • Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225

    Article  Google Scholar 

  • Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu LJ (2008) Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloidd Surf B Biointerfaces 65:197–202

    Article  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  Google Scholar 

  • Kuda T, Yano T (2003) Colorimetric Alamar Blue assay as a bacterial concentration and spoilage index of marine food. Food Control 14:455–461

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Li JE, Wu WL, Wang ZY, Sun GL (2002) Apoptotic effect of As2S2 on K562 cells and its mechanism. Acta Pharmacol Sin 23:991–996

    Google Scholar 

  • Li XF, Feng XQ, Yang S, Fu GQ, Wang TP, Su ZX (2010) Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr Polym 79:439–499

    Google Scholar 

  • Liu H, Du YM, Wang XH, Sun LP (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155

    Article  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Morris GA, Castile J, Smith A, Adams GG, Harding SE (2011) The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)—chitosan nanoparticles. Carbohydr Polym 84:1430–1434

    Article  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    Article  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  Google Scholar 

  • Raja MAG, Katas H, Hamid ZA, Razali NA (2013) Physicochemical properties and in vitro cytotoxicity studies of chitosan as a potential carrier for dicer-substrate siRNA. J Nanomater 1–10. doi:10.1155/2013/653892

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  Google Scholar 

  • Shiloh MU, Ruan J, Nathan C (1997) Evaluation of bacterial survival and phagocyte function with a fluorescence-based microplate assay. Infect Immun 65(8):3193–3198

    Google Scholar 

  • Shu XZ, Zhu KJ (2002) The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm 54:235–243

    Article  Google Scholar 

  • Tang H, Zhang P, Kieft TL, Ryan SJ, Baker SM, Wiesmann W, Rogelj S (2010) Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria. Acta Biomater 6:2562–2571

    Article  Google Scholar 

  • Tao Y, Qian LH, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus. Carbohydr Polym 86:969–974

    Article  Google Scholar 

  • Vishu Kumar AB, Varadaraj MC, Lalitha RG, Tharanathan RN (2004) Low molecular weight of chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta 1670(2):137–146

    Article  Google Scholar 

  • Vishu Kumar AB, Varadaraj MC, Lalitha RG, Tharanathan RN (2007) Low molecular weight chitosans—preparation with the aid of pronase, characterization and their bactericidal activity towards Bacillus cereus and Escherichia coli. Biochim Biophys Acta 1770:495–505

    Article  Google Scholar 

  • Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ (2009) Effect of oleoyl–chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym 76:17–22

    Article  Google Scholar 

  • Yang F, Cui XQ, Yang XR (2002) Interaction of low-molecular-weight chitosan with membrane studied by electrochemical methods and surface plasmon resonance. Biophys Chem 99:99–106

    Article  Google Scholar 

  • Zhang H, Oh M, Allen C, Kumacheva E (2004) Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules 5(6):2461–2468

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported and funded by a grant (02-01-02-SF0737) from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia and Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haliza Katas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwar, A., Katas, H. & Zin, N.M. Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanopart Res 16, 2517 (2014). https://doi.org/10.1007/s11051-014-2517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2517-9

Keywords

Navigation