Skip to main content
Log in

Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Transition metals of copper, zinc, manganese, and nickel were substituted into cobalt ferrite nanoparticles via a sol–gel route using citric acid as a chelating agent. The microstructure and elemental compositions of the nanoparticles were characterized using scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The particle size of the nanoparticles was investigated using particle size analyzer, and the zeta potentials were measured using zeta potential analyzer. The phase components of the synthesized transition metal-substituted cobalt ferrite nanoparticles were studied using Raman spectroscopy. The biocompatibility of the nanoparticles was assessed using osteoblast-like cells. Results indicated that the substitution of transition metals strongly influences the physical, chemical properties, and biocompatibility of the cobalt ferrite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ayyappan S, Panneerselvam G, Antony MP, Rama Rao NV, Thirumurugan N, Bharathi A, Philip J (2011) Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Appl Phys 109:084303–084308

    Article  Google Scholar 

  • Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology, Two-volume set. Elsevier Science & Technology, California

    Google Scholar 

  • Buteicǎ AS, Mihaiescu DE, Grumezescu AM, Vasile BŞ, Popescu A, Mihaiescu OM, Cristescu R (2010) The anti-bacterial activity of magnetic nanofluid: Fe3O4/oleic acid/cephalosporins core/shell/adsorption-shell proved on S. Aureus and E. Coli and possible applications as drug delivery systems. Dig J Nanometer Biostruct 5:927–932

    Google Scholar 

  • Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    Article  Google Scholar 

  • Cao C, Ma Z, Ma C, Pan W, Liu Q, Wang J (2012) Synthesis and characterization of Fe/C core-shell nanoparticles. Mater Lett 88:61–64

    Article  Google Scholar 

  • Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–6013

    Article  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  Google Scholar 

  • Iconaru SL, Andronescu E, Ciobanu CS, Prodan AM, le Coustumer P, Predoi D (2012) Biocompatible magnetic iron oxide nanoparticles doped dextran thin films produced by spin coating deposition solution. Dig J Nanometer Biostruct 7:399–409

    Google Scholar 

  • Jamon D, Donatini F, Siblini A, Royer F, Perzynski R, Cabuil V, Neveu S (2009) Experimental investigation on the magneto-optic effects of ferrofluids via dynamic measurements. J Magn Magn Mater 321:1148–1154

    Article  Google Scholar 

  • Köseoğlu Y, Baykal A, Toprak MS, Gözüak F, Başaran AC, Aktaş B (2008) Synthesis and characterization of ZnFe2O4 magnetic nanoparticles via a PEG-assisted route. J Alloys Compd 462:209–213

    Article  Google Scholar 

  • Kruse PF, Patterson MK (1973) Tissue culture: methods and applications. Academic Press, The University of Michigan, Michigan

    Google Scholar 

  • Li Y, Wong C, Xiong J, Hodgson P, Wen C (2010) Cytotoxicity of titanium and titanium alloying elements. J Dent Res 89:493–497

    Article  Google Scholar 

  • Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D (2011) Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo. Int J Nanomedicine 6:2805–2819

    Article  Google Scholar 

  • Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104:1141–1145

    Article  Google Scholar 

  • Mathew T, Malwadkar S, Shivanand P, Sharanappa N, Sebastian CP, Satyanarayana CV V, Bokade VV (2003) Oxidative dehydrogenation of ethylbenzene over Cu1−xCoxFe2O4 catalyst system: influence of acid-base property. Catal Lett 91:217–224

    Article  Google Scholar 

  • Parkin IP (2000) Basic solid state chemistry. Appl Organomet Chem 14:227–228

    Article  Google Scholar 

  • Pileni MP (2001) Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Funct Mater 11:323–336

    Article  Google Scholar 

  • Pina S, Vieira SI, Torres PMC, Goetz-Neunhoeffer F, Neubauer J, Da Cruz E, Silva OAB, Da Cruz E, Silva EF, Ferreira JMF (2010a) In vitro performance assessment of new brushite-forming Zn- and ZnSr-substituted β-TCP bone cements. J Biomed Mater Res Part B 94:414–420

    Google Scholar 

  • Pina S, Vieira SI, Rego P, Torres PMC, e Silva OAB, e Silva EF, Ferreira JMF (2010b) Biological responses of brushite-forming Zn-and ZnSr-substituted β-Tricalcium phosphate bone cements. Eur Cell Mater 20:162–177

    Google Scholar 

  • Ruuge EK, Rusetski AN (1993) Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. J Magn Magn Mater 122:335–339

    Article  Google Scholar 

  • Sanpo N, Berndt CC, Wang J (2012a) Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. J Appl Phys 112:084333

    Article  Google Scholar 

  • Sanpo N, Wang J, Berndt CC (2012b) Effect of zinc substitution on microstructure and antibacterial properties of cobalt ferrite nanopowders synthesized by sol–gel methods. Adv Mater Res 535–537:436–439

    Article  Google Scholar 

  • Sanpo N, Berndt CC, Wang J (2012c) Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol–gel methods. J Appl Phys 112:084333–084336

    Article  Google Scholar 

  • Sanpo N, Berndt CC, Wen C, Wang J (2013) Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomater 9:5830–5837

    Article  Google Scholar 

  • Sun ZL (1995) Effects of metal ions on osteoblast-like cell metabolism. University of Michigan, Michigan

    Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Ceram Soc 126:273–279

    Google Scholar 

  • Tamura H, Matijevic E (1982) Precipitation of cobalt ferrites. J Colloid Interface Sci 90:100–109

    Article  Google Scholar 

  • Varshney D, Verma K, Kumar A (2011) Substitutional effect on structural and magnetic properties of AxCo1−xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J Mol Struct 1006:447–452

    Article  Google Scholar 

  • Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotech 24:1211–1217

    Article  Google Scholar 

  • Wilkinson JM (2003) Nanotechnology applications in medicine. Med Device Technol 14:29–31

    Google Scholar 

  • Yu T, Shen ZX, Shi Y, Ding J (2002) Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study. J Phys Condens Matter 14:L613–L618

    Article  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2007) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  Google Scholar 

  • Zhang L, Pornpattananangkul D, Hu CM J, Huang CM (2010) Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 17:585–594

    Article  Google Scholar 

  • Zhen L, He K, Xu CY, Shao WZ (2008) Synthesis and characterization of single-crystalline MnFe2O4 nanorods via a surfactant-free hydrothermal route. J Magn Magn Mater 320:2672–2675

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Sanpo is the recipient of Swinburne University Postgraduate Research Award (SUPRA). The authors wish to thank the Rajamangala University of Technology Phra Nakhon (RMUTP), Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Noppakun Sanpo or Jirasak Tharajak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanpo, N., Tharajak, J., Li, Y. et al. Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. J Nanopart Res 16, 2510 (2014). https://doi.org/10.1007/s11051-014-2510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2510-3

Keywords

Navigation