Skip to main content

Advertisement

Log in

Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai J, Zhang J, Wu J, Shen L, Zeng J, Ding J, Wu Y, Gong Z, Li A, Xu S (2009) JWA regulates melanoma metastasis by integrin αVβ3 signaling. Oncogene 29(8):1227–1237

    Article  Google Scholar 

  • Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev 57(4):505–527

    Article  Google Scholar 

  • Bergh J, Lin H, Lansing L, Mohamed N, Davis F, Mousa S, Davis J (2005) Integrin aVb3 contains a cell surface receptor site for thyroid hormone that is linked to activation of MAPK and induction of angiogenesis. Endocrinology 146:2864–2871

    Article  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr J-P (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301

  • Burnett CA, Xie J, Quijano J, Shen Z, Hunter F, Bur M, Li KC, Danthi SN (2005) Synthesis, in vitro, and in vivo characterization of an integrin alpha(v)beta(3)-targeted molecular probe for optical imaging of tumor. Bioorg Med Chem 13(11):3763–3771

  • Choi KJ, Zhang SN, Choi IK, Kim JS, Yun CO (2012) Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther 19(7):711–723

    Article  Google Scholar 

  • Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):155–168

    Article  Google Scholar 

  • Danhier F, Breton AL, Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9(11):2961–2973

    Article  Google Scholar 

  • Dass C, Hallaj-Nezhadi S, Lotfipour F (2010) Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 13(3):472–485

    Google Scholar 

  • Davis PJ, Davis FB, Cody V (2005) Membrane receptors mediating thyroid hormone action. Trends Endocrinol Metab 16(9):429–435

    Article  Google Scholar 

  • Davis PJ, Davis FB, Lin H-Y (2008) Promotion by thyroid hormone of cytoplasm-to-nucleus shuttling of thyroid hormone receptors. Steroids 73(9–10):1013–1017

    Article  Google Scholar 

  • Dehshahri A, Kazemi Oskuee R, Thomas Shier W, Ramezani M (2012) β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity. Curr Nanosci 8(4):548–555

    Article  Google Scholar 

  • Dehshahri A, Alhashemi SH, Jamshidzadeh A, Sabahi Z, Samani SM, Sadeghpour H, Mohazabieh E, Fadaei M (2013) Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes. Macromol Res 21(12):1322–1330

    Article  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  Google Scholar 

  • Donahue R, Kessler S, Bodine D, McDonagh K, Dunbar C, Goodman S, Byrne E, Raffeld M, Moen R (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176(4):1125–1135

    Article  Google Scholar 

  • Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131

  • Forrest ML, Meister GE, Koerber JT, Pack DW (2004) Partial acetylation of polyethylenimine enhances in vitro gene delivery. Pharm Res 21(2):365–371

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840

    Article  Google Scholar 

  • Gabrielson NP, Pack DW (2006) Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules 7(8):2427–2435

    Article  Google Scholar 

  • Gladson CL, Hancock S, Arnold MM, Faye-Petersen OM, Castleberry RP, Kelly DR (1996) Stage-specific expression of integrin alphaVbeta3 in neuroblastic tumors. Am J Pathol 148(5):1423

    Google Scholar 

  • Godbey W, Wu KK, Mikos AG (1999) Tracking the intracellular path of poly (ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 96(9):5177–5181

    Article  Google Scholar 

  • Han S, Mahato RI, Sung YK, Kim SW (2000) Development of biomaterials for gene therapy. Mol Ther 2(4):302–317

    Article  Google Scholar 

  • Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476

    Article  Google Scholar 

  • Hosotani R, Kawaguchi M, Masui T, Koshiba T, Ida J, Fujimoto K, Wada M, Doi R, Imamura M (2002) Expression of integrin [alpha] V [beta] 3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25(2):e30–e35

    Article  Google Scholar 

  • Janát-Amsbury MM, Yockman JW, Lee M, Kern S, Furgeson DY, Bikram M, Kim SW (2004) Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol Ther 9(6):829–836

    Article  Google Scholar 

  • Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170(3):827–845

    Article  Google Scholar 

  • Kunath K, Merdan T, Hegener O, Häberlein H, Kissel T (2003) Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med 5(7):588–599

  • Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood 90(7):2541–2548

    Google Scholar 

  • Lin Z, Wang C, Feng X, Liu M, Li J, Bai C (1998) The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res 26(13):3228–3234

    Article  Google Scholar 

  • Liu Q, Muruve D (2003) Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 10(11):935–940

    Article  Google Scholar 

  • Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60(2):247–266

    Article  Google Scholar 

  • Mahato RI, Lee M, Han SO, Maheshwari A, Kim SW (2001) Intratumoral delivery of p2CMVmlL-12 using water-soluble lipopolymers. Mol Ther 4(2):130–138

    Article  Google Scholar 

  • Merkel OM, Germershaus O, Wada CK, Tarcha PJ, Merdan T, Kissel T (2009) Integrin ανβ3 targeted gene delivery using RGD peptidomimetic conjugates with copolymers of PEGylated poly(ethylene imine). Bioconjug Chem 20(6):1270–1280

    Article  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11(6):990–995

    Article  Google Scholar 

  • Mokhtarieh AA, Kim S, Lee Y, Chung BH, Lee MK (2013) Novel cell penetrating peptides with multiple motifs composed of RGD and its analogs. Biochem Biophys Res Commun 432(2):359–364

    Article  Google Scholar 

  • Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly (ethylene imine) and its derivatives. J Gene Med 7(8):992–1009

    Article  Google Scholar 

  • Nishikawa M, Huang L (2001) Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 12(8):861–870

    Article  Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5(10):1425–1433

    Article  Google Scholar 

  • Oskuee RK, Dehshahri A, Shier WT, Ramezani M (2009) Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med 11(10):921–932

    Article  Google Scholar 

  • Ozmen L, Pericin M, Hakimi J, Chizzonite R, Wysocka M, Trinchieri G, Gately M, Garotta G (1994) Interleukin 12, interferon gamma, and tumor necrosis factor alpha are the key cytokines of the generalized Shwartzman reaction. J Exp Med 180(3):907–915

    Article  Google Scholar 

  • Parhiz H, Shier WT, Ramezani M (2013) From rationally-designed polymeric and peptidic systems to sophisticated gene delivery nano-vectors. Int J Pharm 457(1):237–259

    Article  Google Scholar 

  • Quezada A, French M, Perrard J, Durland R, Coleman M, Larson J, Ponce R (2004) Biodistribution and safety studies of hDel-1 plasmid-based gene therapy in mouse and rabbit models. J Pharm Pharmacol 56(2):177–185

    Article  Google Scholar 

  • Rudolph C, Sieverling N, Schillinger U, Lesina E, Plank C, Thünemann AF, Schönberger H, Rosenecker J (2007) Thyroid hormone (T3)-modification of polyethyleneglycol (PEG)-polyethyleneimine (PEI) graft copolymers for improved gene delivery to hepatocytes. Biomaterials 28(10):1900–1911

    Article  Google Scholar 

  • Thomas M, Klibanov A (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62(1):27–34

    Article  Google Scholar 

  • Trinchieri G (1994) Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84(12):4008–4027

    Google Scholar 

  • Tucci M, De Palma R, Lombardi L, Rodolico G, Berrino L, Dammacco F, Silvestris F (2009) β3 Integrin subunit mediates the bone-resorbing function exerted by cultured myeloma plasma cells. Cancer Res 69(16):6738–6746

    Article  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: past, present and future. Nat Med 9(3):269–277

    Article  Google Scholar 

  • Wang D, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI (2002) Novel branched poly (ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromolecules 3(6):1197–1207

    Article  Google Scholar 

  • Xu Q, Guo L, Gu X, Zhang B, Hu X, Zhang J, Chen J, Wang Y, Chen C, Gao B, Kuang Y, Wang S (2012) Prevention of colorectal cancer liver metastasis by exploiting liver immunity via chitosan-TPP/nanoparticles formulated with IL-12. Biomaterials 33(15):3909–3918

    Article  Google Scholar 

  • Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R (2003) Integrin α1β1 and α2β1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res 63(23):8312–8317

    Google Scholar 

  • Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142

    Google Scholar 

  • Zaiss AK, Muruve DA (2005) Immune responses to adeno-associated virus vectors. Curr Gene Ther 5(3):323–331

    Article  Google Scholar 

  • Zauner W, Ogris M, Wagner E (1998) Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev 30(1):97–113

    Article  Google Scholar 

  • Zhao L, Wu J, Zhou H, Yuan A, Zhang X, Xu F, Hu Y (2011) Local gene delivery for cancer therapy. Curr Gene Ther 11(5):423–432

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Shiraz University of Medical Sciences Shiraz, Iran (Grant number: 91-01-36-4847). The financial support by the Iranian Nanotechnology Initiative Council (INIC) is gratefully acknowledged. The results presented in this paper were parts of thesis of Mahin Fadaei and Zahra Sabahi. We would like to thank Amir Zarrinhaghighi and Mr. Akbarizadeh for their helpful assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dehshahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehshahri, A., Sadeghpour, H., Kazemi Oskuee, R. et al. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. J Nanopart Res 16, 2423 (2014). https://doi.org/10.1007/s11051-014-2423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2423-1

Keywords

Navigation