Skip to main content
Log in

Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigated the biodistribution following the administration of nanosized (about 50 and 90 nm) cationic (ζ: +30 and +50 mV) micelles and liposomes intended for drug delivery. The particles were stable and well characterized with respect to size and ζ potential. Ten 5- to 6-week-old male rats were used. The animals were randomly allocated to five groups receiving either cationic micelles or cationic liposomes by single intravenous (IV) administration at a dose of 100 mg/kg bodyweight by single intracerebroventricular (ICV) injection at a dose of 50 μg or no treatment. ICV administration was used to study local distribution in the brain and IV administration to study the systemic distribution of the particles. For both types of particles, ICV administration showed distribution in all ventricles in the brain while IV delivery displayed distribution to the major organs liver, spleen, kidney and lung, but not to the brain. Our data suggest that cationic micelles and liposomes are widely distributed in the body, indicating that these could potentially be used as drug delivery carriers to the major organs, but they do not cross the blood–brain barrier to a significant extent, without a targeting ligand attached. However, they are able to persist in the ventricles of the brain up to 24 h after ICV administration, demonstrating a new ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 44:168–197

    Article  Google Scholar 

  • Andresen TL, Thompson DH, Kaasgaard T (2010) Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol 27:7353–7363

    Article  Google Scholar 

  • Avanti Polar Lipids Inc. (2013) MSDS RhB. http://avantilipids.com/MSDS/msds.php?ProdNum=810150P&format=raw

  • Balogh L, Nigavekar SS, Nair BM, Lesniak W, Zhang C, Sung LY, Kariapper MS, El-Jawahri A, Llanes M, Bolton B, Mamou F, Tan W, Hutson A, Minc L, Khan MK (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:4281–4296

    Google Scholar 

  • Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Control Rel 108:184–196

    Google Scholar 

  • Dai Z, Gjetting T, Mattebjerg MA, Wu C, Andresen TL (2011) Elucidating the interplay between DNA-condensing and free polycations in gene transfection through a mechanistic study of linear and branched PEI. Biomaterials 32:338626–338634

    Google Scholar 

  • de Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:121912–121919

    Google Scholar 

  • Donaldson K (2006) Resolving the nanoparticles paradox. Nanomedicine (Lond) 1:2229–2234

    Article  Google Scholar 

  • Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:4691–4743

    Google Scholar 

  • Gjetting T, Arildsen NS, Christensen CL, Poulsen TT, Roth JA, Handlos VN, Poulsen HS (2010) In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection. Int J Nanomed 5:371–383

    Google Scholar 

  • Gjetting T, Andresen TL, Christensen CL, Cramer F, Poulsen TT, Poulsen HS (2011) A simple protocol for preparation of a liposomal vesicle with encapsulated plasmid DNA that mediate high accumulation and reporter gene activity in tumor tissue. Results Pharma Sci 1:149–156

    Google Scholar 

  • Harrison J, Bartlett CA, Cowin G, Nicholls PK, Evans CW, Clemons TD, Zdyrko B, Luzinov IA, Harvey AR, Iyer KS, Dunlop SA, Fitzgerald M (2012) In vivo imaging and biodistribution of multimodal polymeric nanoparticles delivered to the optic nerve. Small 8:101579–101589

    Article  Google Scholar 

  • Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, Takenaka S, Moller W, Schmid G, Simon U, Kreyling WG (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:3407–3416

    Article  Google Scholar 

  • Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, Chang FH (1999) Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin Cancer Res 5:113645–113652

    Google Scholar 

  • Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5(10):441–450

    Google Scholar 

  • Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1:4313–4316

    Google Scholar 

  • Knudsen KB, Northeved H, Ek PK, Permin A, Andresen TL, Larsen S, Wegener KM, Lam HR, Lykkesfeldt J (2014) Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8:764–774. doi:10.3109/17435390.2013.829589

    Google Scholar 

  • Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105:4561–4567

    Article  Google Scholar 

  • Kreuter J, Gelperina S (2008) Use of nanoparticles for cerebral cancer. Tumori 94:2271–2277

    Google Scholar 

  • Kumar EK, Almdal K, Andresen TL (2012) Synthesis and characterization of ratiometric nanosensors for pH quantification: a mixed micelle approach. Chem Commun (Camb) 48:394776–394778

    Google Scholar 

  • Kumar EK, Feldborg LN, Almdal K, Andresen TL (2013) Synthesis and characterization of a micelle-based pH nanosensor with an unprecedented broad measurement range. Chem Mater 25:91496–91501

    Google Scholar 

  • Lian TF, Ho RJ (2001) Trends and developments in liposome drug delivery systems. J Pharm Sci 90:6667–6680

    Article  Google Scholar 

  • Lo EH, Singhal AB, Torchilin VP, Abbott NJ (2001) Drug delivery to damaged brain. Brain Res Rev 38(1–2):140–148

    Article  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18

    Article  Google Scholar 

  • Moghimi SM, Hunter AC (2001) Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res 18:11–18

    Article  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:6463–6478

    Article  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:2283–2318

    Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Rel 114:3343–3347

    Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:7823–7839

    Article  Google Scholar 

  • Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:193–202

    Google Scholar 

  • Pardridge WM (2011) Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8:17

    Article  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972

    Article  Google Scholar 

  • Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:1113–1137

    Article  Google Scholar 

  • Paxinos G, Watson C (2008) The rat brain in stereotaxic coordinates, 6th edn. Elsevier/Academic Press, New York, pp 1–400

    Google Scholar 

  • Re F, Gregori M, Masserini M (2012) Nanotechnology for neurodegenerative disorders. Nanomedicine 8(Suppl 1):S51–S58

    Article  Google Scholar 

  • Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Rel 108(2–3):193–214

    Article  Google Scholar 

  • Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH, Sousa AA, Auh S, Wilson CM, Sharma K, Aronova MA, Leapman RD, Griffiths GL, Hall MD (2008) Effective transvascular delivery of nanoparticles across the blood–brain tumor barrier into malignant glioma cells. J Transl Med 6:80

    Article  Google Scholar 

  • Schnyder A, Huwyler J (2005) Drug transport to brain with targeted liposomes. NeuroRx. 2:199–207

    Article  Google Scholar 

  • Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN (1997) Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol 15:7647–7652

    Article  Google Scholar 

  • Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, Hanahan D, McDonald DM (1998) Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101:71401–71413

    Article  Google Scholar 

  • Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F (2007) Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with loperamide and rhodamine-123. J Control Rel 122:11–19

    Google Scholar 

  • Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 5:2155–2174

    Article  Google Scholar 

  • Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine 5:4369–4377

    Google Scholar 

  • Zhao W, Zhuang S, Qi XR (2011) Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int J Nanomed 6:3087–3098

    Google Scholar 

Download references

Acknowledgments

The excellent assistance of the Animal Facility, Section of Neurobiology and Section of Pathology and Clinical Pathology at H. Lundbeck A/S, Pramod Kumar EK and Jonas Rosager Henriksen from DTU Nanotech and the contribution from DHI are gratefully acknowledged. This work was supported by H. Lundbeck A/S, DHI and Faculty of Health and Medical Sciences, University of Copenhagen.

Conflict of interest

The authors declare no conflicts of interest that could influence the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Lykkesfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, K.B., Northeved, H., Gjetting, T. et al. Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats. J Nanopart Res 16, 2221 (2014). https://doi.org/10.1007/s11051-013-2221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2221-1

Keywords

Navigation