Skip to main content
Log in

Surface modification: how nanoparticles assemble to molecular imaging probes

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanomaterials have attracted widespread attention due to their unique chemical and physical properties, such as size-dependent optical, magnetic, or catalytic properties, thus have the great potential application, especially in the fields of new materials and devices. The emergence of nanoparticle-based probe has led to important innovations in molecular imaging field. Several types of nanoparticles have been employed for molecular imaging application, including Au/Ag nanoparticles, upconversion nanoparticles (UCNPs), quantum dots, dye-doped nanoparticles, magnetic nanoparticles (MNPs), etc. The preparation of nanoparticle-based probe for molecular imaging routinely includes three steps: synthesis, surface modification, and bioconjugation, among which surface modification plays an important role for the whole procedure. Surface modification usually possesses the safety, biocompatibility, stability, hydrophilicity, and terminal functional groups for further conjugation. This review aims to outline the surface modification of how nanoparticles assemble to probes, focusing on the developments of two widely used nanoparticles, UCNPs and MNPs. Recent advances of different types of linkers, a core component for surface modification, are summarized. It shows the intimate relationship between chemistry and nanoscience. Finally, perspectives and challenges of nanoparticle-based probe in the field of molecular imaging are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abe M, Lai J, Kortylewicz ZP, Nagata H, Fox IJ, Enke CA, Baranowska-Kortylewicz J (2003) Radiolabeled constructs for evaluation of the asialoglycoprotein receptor status and hepatic functional reserves. Bioconjug Chem 14(5):997–1006

    CAS  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933

    CAS  Google Scholar 

  • Bai C, Liu M (2013) From chemistry to nanoscience: not just a matter of size. Angew Chem Int Ed Engl 52(10):2678–2683

    CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557

    CAS  Google Scholar 

  • Bi S, Wei X, Li N, Lei Z (2008) In-situ formation of Fe3O4 nanoparticles within the thermosensitive hairy hybrid particles. Mater Lett 62(17–18):2963–2966

    CAS  Google Scholar 

  • Bogdan N, Vetrone F, Roy R, Capobianco JA (2010) Carbohydrate-coated lanthanide-doped upconverting nanoparticles for lectin recognition. J Mater Chem 20(35):7543–7550

    CAS  Google Scholar 

  • Boyer JC, Cuccia LA, Capobianco JA (2007) Synthesis of colloidal upconverting NaYF4: Er3 +/Yb3 + and Tm3 +/Yb3 + monodisperse nanocrystals. Nano Lett 7(3):847–852

    CAS  Google Scholar 

  • Briley-Saebo KC, Johansson LO, Hustvedt SO, Haaldorsen AG, Bjørnerud A, Fayad ZA, Ahlstrom HK (2006) Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism. Invest Radiol 41(7):560–571

    Google Scholar 

  • Butterworth MD, Illum L, Davis SS (2001) Preparation of ultrafine silica- and PEG-coated magnetite particles. Colloids Surf 179(1):93–102

    CAS  Google Scholar 

  • Cai W, Chen X (2007) Nanoplatfoms for targeted molecular imaging in living subjects. Small 3(11):1840–1854

    CAS  Google Scholar 

  • Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(6):113S–128S

    CAS  Google Scholar 

  • Chastellain M, Petri A, Gupta A, Rao KV, Hofmann H (2004) Superparamagnetic silica-iron oxide nanocomposites for application in hyperthermia. Adv Eng Mater 6(4):235–241

    CAS  Google Scholar 

  • Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29(7):937–943

    CAS  Google Scholar 

  • Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    CAS  Google Scholar 

  • Chen Q, Wang X, Chen F, Zhang Q, Dong B, Yang H, Liu G, Zhu Y (2011) Functionalization of upconverted luminescent NaYF4: Yb/Er nanocrystals by folic acid-chitosan conjugates for targeted lung cancer cell imaging. J Mater Chem 21(21):7661–7667

    CAS  Google Scholar 

  • Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X (2005) Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem 16(6):1433–1441

    CAS  Google Scholar 

  • Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9(6):291–310

    CAS  Google Scholar 

  • Colvin VL, Goldstein AN, Alivisatos AP (1992) Semiconductor nanocrystals covalently bound to metal surface with self-assembled monolayers. J Am Chem Soc 114(13):5221–5230

    CAS  Google Scholar 

  • Cormode DP, Skajaa T, Fayad ZA, Mulder WJ (2009) Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 29(7):992–1000

    CAS  Google Scholar 

  • Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    CAS  Google Scholar 

  • Durán JD, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97(8):2948–2983

    Google Scholar 

  • Dutta RK, Sharma PK, Pandey AC (2010) Design and surface modification of potential luminomagnetic nanocarriers for biomedical application. J Nanopart Res 12(4):1211–1219

    CAS  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935

    CAS  Google Scholar 

  • Flesch C, Unterfinger Y, Bourgeat-Lami E, Duguet E, Delaite C, Dumas P (2005) Poly(ethylene glycol) surface coated magnetic particles. Macromol Rapid Commun 26(18):1494–1498

    CAS  Google Scholar 

  • Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18(3–4):301–313

    CAS  Google Scholar 

  • Gu Y, Huang D, Liu Z, Huang J, Zeng W (2011) Labeling strategies with F-18 for positron emission tomography imaging. Med Chem 7(5):334–344

    CAS  Google Scholar 

  • Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496

    CAS  Google Scholar 

  • Hayashi K, Moriya M, Sakamoto W, Yogo T (2009) Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater 21(7):1318–1325

    CAS  Google Scholar 

  • Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) One-pot biofunctionalization of magnetic nanoparticles via thiol-ene click reaction for magnetic hyperthermia and magnetic resonance imaging. Chem Mater 22(12):3768–3772

    CAS  Google Scholar 

  • Hazer DB, Hazer B (2011) The effect of gold clusters on the autoxidation of poly (3-hydroxy 10-undecenoate-co-3-hydroxy octanoate) and tissue response evaluation. J Polym Res 18(2):251–262

    CAS  Google Scholar 

  • Hazer DB, Hazer B, Dincer N (2011) Soft tissue response to the presence of polypropylene-G-poly(ethylene glycol) comb-type graft copolymers containing gold nanoparticles. J Biomed Biotechnol. doi:10.1155/2011/956169.2011:956169

    Google Scholar 

  • Hazer DB, Mut M, Dincer N, Saribas Z, Hazer B, Ozgen T (2012) The efficacy of silver-embedded polypropylene-grafted polyethylene glycol-coated ventricular catheters on prevention of shunt catheter infection in rats. Childs Nerv Syst 28(6):839–846

    Google Scholar 

  • He J, Van Brocklin HF, Franc BL, Seo Y, Jones EF (2008) Nanoprobes for medical diagnosis: current status of nanotechnology in molecular imaging. Curr Nanosci 4(1):17–29

    CAS  Google Scholar 

  • Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine 7(3):429–445

    CAS  Google Scholar 

  • Hong X, Li J, Wang M, Xu J, Guo W, Li J, Bai Y, Li T (2004) Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem Mater 16(21):4022–4027

    CAS  Google Scholar 

  • Huang G, Zhang C, Li S, Khemtong C, Yang SG, Tian R, Minna JD, Brown KC, Gao J (2009) A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging. J Mater Chem 19(35):6367–6372

    CAS  Google Scholar 

  • Jeon SL, Chae MK, Jang EJ, Lee C (2013) Cleaved iron oxide nanoparticles as T2 contrast agents for magnetic resonance imaging. Chemistry 19(13):4217–4222

    CAS  Google Scholar 

  • Jeong J, Lee CS, Chung SJ, Chung BH (2010) Enhanced immobilization of hexa-arginine-tagged esterase on gold nanoparticles using mixed self-assembled monolayers. Bioprocess Biosyst Eng 1(33):165–169

    Google Scholar 

  • Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10(2):186–191

    CAS  Google Scholar 

  • Kalayci ÖA, Cömert FB, Hazer B, Atalay T, Cavicchi KA, Cakmak M (2010) Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic combe-type graft copolymers. Polym Bull 65(3):215–226

    CAS  Google Scholar 

  • Kalayci ÖA, Duygulu O, Hazer B (2013) Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer. J Nanopart Res. doi:10.1007/s11051-012-1355-x

    Google Scholar 

  • Kobayashi H, Kosaka N, Ogawa M, Morgan NY, Smith PD, Murray CB, Ye X, Collins J, Kumar GA, Bell H, Choyke PL (2009) In vivo multiple color lymphatic imaging using upconverting nanocrystal. J Mater Chem 19(36):6481–6484

    Google Scholar 

  • Kohler N, Fryxell GE, Zhang M (2004) A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. J Am Chem Soc 126(23):7206–7211

    CAS  Google Scholar 

  • Kumar M, Zhang P (2009) Highly sensitive and selective label-free optical detection of DNA hybridization based on photon upconverting nanoparticles. Langmuir 25(11):6024–6027

    CAS  Google Scholar 

  • Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1(10):1381–1396

    CAS  Google Scholar 

  • Larsen EK, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Ostergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3(7):1947–1951

    CAS  Google Scholar 

  • Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    CAS  Google Scholar 

  • Li N, Binder BH (2011) Click-chemistry for nanoparticle-modification. J Mater Chem 21(42):16717–16734

    CAS  Google Scholar 

  • Li F, Li C, Liu X, Chen Y, Bai T, Wang L, Shi Z, Feng S (2012) Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 nanocrystals as potential multifunctional bioprobes. Chemistry 18(37):11641–11646

    CAS  Google Scholar 

  • Licha K, Resch-Genger U (2011) Probes for optical imaging: new developments. Drug Discov Today 8(2–4):e87–e94

    CAS  Google Scholar 

  • Liu D, Gu N (2012) Nanoparticle probes and molecular imaging in cancer. In: Srirajaskanthan R (ed) Nanomedicine and cancer. Science Publishers, New York, pp 105–122

    Google Scholar 

  • Liu TY, Hu SH, Liu KH, Liu DM, Chen SY (2008) Study on controlled drug permeation of magnetic-sensitive ferrogels: effects of Fe3O4 and PVA. J Control Release 126(3):228–236

    CAS  Google Scholar 

  • Liu Q, Li C, Yang T, Yi T, Li F (2010) “Drawing” upconversion nanophosphors into water through host-guest interaction. Chem Commun 46(30):5551–5553

    CAS  Google Scholar 

  • Liu C, Wang Z, Jia H, Li Z (2011a) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and grapheme oxide: a highly sensitive biosensing platform. Chem Commun 47(16):4661–4663

    CAS  Google Scholar 

  • Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, Zhang X, Yi T, Wu D, Li F (2011b) 18F-Labeled magnetic-upconversion nanophosphors via rare-Earth cation-assisted ligand assembly. ACS Nano 5(4):3146–3157

    CAS  Google Scholar 

  • Lodhia J, Mandarano G, Ferris Nj, Eu P, Cowell S (2010) Development and use of iron oxide nanoparticles (part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 6(2):e12

    CAS  Google Scholar 

  • Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2(3):183–186

    CAS  Google Scholar 

  • Lu H, Yi G, Zhao S, Chen D, Guo LH, Cheng J (2004) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14(8):1336–1341

    CAS  Google Scholar 

  • Lu AH, Li WC, Matoussevitch N, Spliethoff B, Bönnemann H, Schüth F (2005) Highly stable carbon-protected cobalt nanoparticles and graphite shell. Chem Commun 1:98–100

    Google Scholar 

  • Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    CAS  Google Scholar 

  • Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R (2006) One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules 7(11):3132–3138

    CAS  Google Scholar 

  • Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 128(19):6426–6436

    CAS  Google Scholar 

  • Meiser F, Cortez C, Caruso F (2004) Biofunctionalization of fluorescent rare-earth-doped lanthanum phosphate colloidal nanoparticles. Angew Chem Int Ed Engl 43(44):5954–5957

    CAS  Google Scholar 

  • Minchin RF, Martin DJ (2010) Minireview: nanoparticles for molecular imaging—an overview. Endocrinology 151(2):474–481

    CAS  Google Scholar 

  • Misri R, Saatchi K, Häfeli UO (2012) Nanoprobes for hybrid SPECT/MR molecular imaging. Nanomed 7(5):719–733

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts. J Nanopart Res 10(3):507–517

    CAS  Google Scholar 

  • Naccache R, Vetrone F, Mahalingam V (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF3: Ho3+/Yb3+ nanoparticles. Chem Mater 21(4):717–723

    CAS  Google Scholar 

  • Nam SH, Bae YM, Park YI, Kim JH, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem Int Ed Engl 50(27):6093–6097

    CAS  Google Scholar 

  • Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared upconversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8(11):3834–3838

    Google Scholar 

  • Pedroni M, Piccinelli F, Passuello T, Giarola M, Mariotto G, Polizzi S, Bettinelli M, Speghini A (2011) Lanthanide doped upconverting colloidal CaF2 nanoparticles preparation by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 3(4):1456–1460

    CAS  Google Scholar 

  • Pilloni M, Nicolas J, Marsaud V, Bouchemal K, Frongia F, Scano A, Ennas G, Dubernet C (2010) PEGylation and preliminary biocompatibility evaluation of magnetite-silica nanocomposites obtained by high energy milling. Int J Pharm 401(1–2):103–112

    CAS  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    CAS  Google Scholar 

  • Reynolds F, Kelly KA (2011) Techniques for molecular imaging probe design. Mol Imaging 10(6):407–419

    CAS  Google Scholar 

  • Rosenblum LT, Kosaka N, Mitsunaga M, Choyke PL, Kobayashi H (2010) In vivo molecular imaging using nanomaterials: general in vivo characteristics of nano-sized reagents and application for cancer diagnosis. Mole Membr Biol 27(7):274–285

    CAS  Google Scholar 

  • Ryu J, Park HY, Kim K, Kim H, Yoo JH, Kang M, Im K, Grailhe R, Song R (2010) Facile synthesis of ultrasmall and hexagonal NaGdF4: Yb3+, Er3+ nanoparticles with magnetic and upconversion imaging properties. J Phys Chem C 114(49):21077–21082

    CAS  Google Scholar 

  • Sahoo Y, Pizem H, Fried T, Golodnitsky BL, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907–7911

    CAS  Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    CAS  Google Scholar 

  • Schellenberger EA, Bogdanov A Jr, Högemann D, Tait J, Weissleder R, Josephson L (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1(2):102–107

    CAS  Google Scholar 

  • Shang H, Chang WS, Kan S, Majetich SA, Lee GU (2006) Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization. Langmuir 22(6):2516–2522

    CAS  Google Scholar 

  • Sivakumar S, Diamente PR, van Veggel FC (2006) Silica-coated Ln3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chemistry 12(22):5878–5884

    CAS  Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    CAS  Google Scholar 

  • Sun C, Lee JS, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265

    CAS  Google Scholar 

  • Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16

    CAS  Google Scholar 

  • Tada DB, Vono LL, Duarte EL, Itri R, Kiyohara PK, Baptista MS, Rossi LM (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 23(15):8194–8199

    CAS  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638

    CAS  Google Scholar 

  • Traina CA, Schwartz J (2007) Surface modification of Y2O3 nanoparticles. Langmuir 23(18):9158–9161

    CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    CAS  Google Scholar 

  • Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008

    CAS  Google Scholar 

  • Wang L, Li Y (2006) Green upconversion nanocrystals for DNA detection. Chem Commun 24:2557–2559

    Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005a) A general strategy for nanocrystal synthesis. Nature 437:121–124

    CAS  Google Scholar 

  • Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y (2005b) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed Engl 44(37):6054–6057

    CAS  Google Scholar 

  • Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839–1854

    CAS  Google Scholar 

  • Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995) Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 16(2–3):321–334

    CAS  Google Scholar 

  • Wunderbaldinger P, Josephson L, Weissleder R (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13(2):264–268

    CAS  Google Scholar 

  • Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    CAS  Google Scholar 

  • Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009a) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81(21):8687–8694

    CAS  Google Scholar 

  • Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH (2009b) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30(29):5592–5600

    CAS  Google Scholar 

  • Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K, Huh YM, Haam S (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46(46):8836–8839

    CAS  Google Scholar 

  • Ye Y, Chen X (2011) Integrin targeting for tumor optical imaging. Theranostics 1:102–126

    CAS  Google Scholar 

  • Ye F, Qin J, Toprak MS, Muhammed M (2011) Multifunctional core-shell nanoparticles: superparamagnetic, mesoporous, and thermosensitive. J Nanopart Res 13(11):6157–6167

    CAS  Google Scholar 

  • Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16(18):2324–2329

    CAS  Google Scholar 

  • Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumor under near-infrared irradiation. Biomaterials 31(33):8724–8731

    CAS  Google Scholar 

  • Zeng W, Miao W (2009) Development of small molecular probes for the molecular imaging of apoptosis. Anticancer Agents Med Chem 9(9):986–995

    CAS  Google Scholar 

  • Zhang M, Ferrari M (1998) Hemocompatible polyethylene glycol films on silicon. Biomed Microdevices 1(1):81–89

    CAS  Google Scholar 

  • Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetic nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561

    CAS  Google Scholar 

  • Zhang Y, Sun C, Kohler N, Zhang M (2004) Self-assembled coating on individual monodisperse magnetite nanoparticle for efficient intracellular uptake. Biomed Microdevices 6(1):33–40

    CAS  Google Scholar 

  • Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7(10):3203–3207

    CAS  Google Scholar 

  • Zhang Q, Song K, Zhao J, Kong X, Sun Y, Liu X, Zhang Y, Zeng Q, Zhang H (2009) Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4: Yb/Er (or Yb/Tm) upconverting nanoparticles from hydrophobic to hydrophilic. J Colloid Interface 336(1):171–175

    CAS  Google Scholar 

  • Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323–1349

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (30900377, 81271634, 81371690, 81000596), New Century Excellent Talents Project (NCET-10-0800), the Fundamental Research Funds for the Central Universities, and Hunan Provincial Natural Science Foundation of China (12JJ1012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H., Yu, L., Gao, F. et al. Surface modification: how nanoparticles assemble to molecular imaging probes. J Nanopart Res 15, 2100 (2013). https://doi.org/10.1007/s11051-013-2100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2100-9

Keywords

Navigation