Skip to main content

Advertisement

Log in

Tuning the self-assembled 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol nanoarchitectures using the phase inversion method

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

1,3:2,4-Di(3,4-dimethylbenzylidene) sorbitol (DMDBS) molecules can self-assemble into nanoscaled structures in organic solvents and polymer melts. The nanofibril structures were the mostly found. In this study, we used two phase inversion methods, i.e., dry and wet methods, to obtain different DMDBS nanoarchitectures. Poly(vinylidene fluoride) (PVDF) was chosen as polymer matrix, and the DMDBS structures were tuned by the process of PVDF membrane formation (crystallization and liquid–liquid demixing). When the membrane was prepared using the dry method, the DMDBS structure is controlled by the PVDF crystallization. Fewer DMDBS nanofibrils formed on the surfaces, and no nanofibrils were found in the cross-sections. On the other hand, when the membrane was prepared using the wet method, the liquid–liquid demixing (nonsolvent induced phase separation) occurred simultaneously as PVDF crystallized, and thus influenced the aggregation of DMDBS molecules. DMDBS is an amphiphilic molecule with two hydrophilic hydroxyl groups. The addition of nonsolvent (water) caused a large number of DMDBS molecules to aggregate outside the hydrophobic PVDF. In addition, a new structure “nanomat” was found. The mat was composed of DMDBS nanofibrils with diameters of 10–20 nm, similar to those observed in the dry method membranes. Fourier transform infra-red spectroscopy indicates that the DMDBS molecules self-assembled (aggregated) mainly through intermolecular hydrogen bonding in the presence of PVDF. The more intermolecular hydrogen bonding between DMDBS existed, the more excessive amounts of DMDBS molecules were, leading to the formation of nanomats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bernland K, Tervoot T, Smith T (2009) Phase behavior and optical- and mechanical properties of the binary system isotactic polypropylene and the nucleating/clarifying agent 1,2,3-trideoxy-4,6:5,7-bis-O-[(4-propylphenyl) methylene]-nonitol. Polymer 50:2460–2464

    Article  CAS  Google Scholar 

  • Bulte AMW, Folkers B, Mulder MHV, Smolders CA (1993) Membranes of semicrystalline aliphatic polyamide nylon 4, 6: formation by diffusion-induced phase separation. J Appl Polym Sci 50:13–26

    Article  Google Scholar 

  • Bulte AMW, Mulder MHV, Smolders CA, Strathmann H (1996) Diffusion induced phase separation with crystallizable nylons. II. Relation to final membrane morphology. J Membr Sci 121:37–49

    Article  CAS  Google Scholar 

  • Cao J, Wang K, Cao W, Zhang Q, Du R, Fu Q (2009) Combined effect of shear and nucleating agent on the multilayered structure of injection-molded bar of isotactic polypropylene. J Appl Polym Sci 112:1104–1113

    Article  CAS  Google Scholar 

  • Cheng L-P, Lin D-J, Yang K-C (2000) Formation of mica-intercalated-nylon 6 nanocomposite membranes by phase inversion method. J Membr Sci 172:157–166

    Article  CAS  Google Scholar 

  • Feng C, Khulbe KC, Matsuura T, Gopal R, Kaur S, Ramakrishn S, Khayet M (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membrane Sci 311:1–6

    Article  CAS  Google Scholar 

  • Gopal R, Kaura S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586

    Article  CAS  Google Scholar 

  • Kesting RE (1973) Concerning the microstructure of dry-RO membranes. J Appl Polym Sci 17:1771–1785

    Article  CAS  Google Scholar 

  • Kesting RE (1985) Synthetic polymeric membranes. Wiley, New York

    Google Scholar 

  • Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23:3487–3493

    Article  CAS  Google Scholar 

  • Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt H-W (2003) The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules 36:5150–5156

    Article  CAS  Google Scholar 

  • Lai W-C (2011) The effect of self-assembled nanofibrils on the morphology and microstructure of poly(l-lactic acid). Soft Matter 7:3844–3851

    Article  CAS  Google Scholar 

  • Lai W-C (2012) Microstructural investigation of concentric-circled poly(l-lactic acid) spherulites with self-assembled nanofibrils. RSC Advances 2:7221–7227

    Article  CAS  Google Scholar 

  • Lai W-C, Wu C-H (2010) Studies on the self-assembly of neat DBS and DBS/PPG organogels. J Appl Polym Sci 115:1113–1119

    Article  CAS  Google Scholar 

  • Lai W-C, Tseng S-C, Tung S-H, Huang YE, Raghavan SR (2009) Nanostructured polymers prepared using a self-assembled nanofibrillar scaffold as a reverse template. J Phys Chem B 113:8026–8030

    Article  CAS  Google Scholar 

  • Macauley NJ, Harkin-Jones EMA, Murphy WR (1998) The influence of nucleating agents on the extrusion and thermoforming of polypropylene. Polym Eng Sci 38:516–523

    Article  CAS  Google Scholar 

  • Meng J, Yuan J, Kang Y, Zhang Y, Du Q (2011) Surface glycosylation of polysulfone membrane towards a novel complexing membrane for boron removal. J Colloid Interface Sci 368:197–207

    Article  Google Scholar 

  • Mercurio DJ, Spontak RJ (2001) Morphological characteristics of 1,3:2,4-dibenzylidene sorbitol/poly(propylene glycol) organogels. J Phys Chem B 105:2091–2098

    Article  CAS  Google Scholar 

  • Mohmeyer N, Wang P, Schmidt H-W, Zakeeruddin SZ, Gratzel M (2004) Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators. J Mater Chem 14:1905–1909

    Article  CAS  Google Scholar 

  • Simone S, Figoli A, Criscuolu A, Carnevale MC, Rosselli A, Drioli E (2010) Preparation of hollow fibre membranes from PVDF/PVP blends and their application in VMD. J Membr Sci 364:219–232

    Article  CAS  Google Scholar 

  • Smith TL, Masilamani D, Bui LK, Khanna YP, Bray RG, Hammond WB, Curran S, Belles JJ Jr, Binder-Castelli S (1994) The mechanism of action of sugar acetals as nucleating agents for polypropylene. Macromolecules 27:3147–3155

    Article  CAS  Google Scholar 

  • Strathmann H, Kock K (1977) The formation mechanism of phase inversion membranes. Desalination 21:241–255

    Article  CAS  Google Scholar 

  • Su YS, Kuo CY, Wang DM, Lai JY, Deratani A, Pochat C, Bouyer D (2009) Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation. J Membr Sci 338:17–28

    Article  CAS  Google Scholar 

  • Tenma M, Mieda N, Takamatsu S, Yamaguchi M (2008) Structure and properties for transparent polypropylene containing sorbitol-based clarifier. J Polym Sci Polym Phys Ed 46:41–47

    Article  CAS  Google Scholar 

  • Wang K, Zhou CJ, Tang CY, Zhang Q, Du RN, Fu Q, Li L (2009) Rheologically determined negative influence of increasing nucleating agent content on the crystallization of isotactic polypropylene. Polymer 50:696–706

    Article  CAS  Google Scholar 

  • Watase M, Itagaki H (1998) Thermal and rheological properties of physical gels formed from benzylidene-D-sorbitol derivatives. Bull Chem Soc Jpn 71:1457–1466

    Article  CAS  Google Scholar 

  • Wilder EA, Antonucci JM (2005) Improved dental composites utilizing dibenzylidene sorbitol networks. Macromol Symp 227:255–263

    Article  CAS  Google Scholar 

  • Wilder EA, Braunfeld M, Jinnai BH, Hall CK, Agard DA, Spontak RJ (2003) Nanofibrillar networks in poly(ethyl methacrylate) and its silica nanocomposites. J Phys Chem B 107:11633–11642

    Article  CAS  Google Scholar 

  • Yan L, Li YS, Xiang CB (2005) Preparation of poly(vinylidene fluoride) (PVDF) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 46:7701–7706

    Article  CAS  Google Scholar 

  • Young TH, Huang YH, Huang YS (2000) The formation mechanism of EVAL membranes prepared with or without the nonsolvent absorption process. J Membr Sci 171:197–206

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Taiwan National Science Council (NSC 100-2221-E-032-007). The authors also wish to thank Mrs. Li-Ting Cheng for assisting with some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chi Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, WC., Tseng, SJ. Tuning the self-assembled 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol nanoarchitectures using the phase inversion method. J Nanopart Res 15, 2060 (2013). https://doi.org/10.1007/s11051-013-2060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2060-0

Keywords

Navigation