Skip to main content
Log in

QSAR studies of the dispersion of SWNTs in different organic solvents

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Artificial neural network (ANN) and multiple linear regression (MLR) approaches were successfully applied to construct quantitative structure–activity relationship models of the dispersibility of single-walled carbon nanotubes (SWNTs) in different organic solvents. A subset of the calculated descriptors selected by enhanced replacement method (ERM) was used in the QSPR models development. The predictive abilities of ERM–MLR and ERM–ANN models were determined using a test set of six organic solvents affording predictive correlation coefficients of 0.924 and 0.963, respectively, showing good predictive power of the models obtained. The final models satisfied a set of rigorous validation criteria and performed well in predicting of the external test set. The results obtained in this study, confirm the importance of steric and electrostatic interactions, molecular flexibility, polarizability and hydrogen bonding ability of organic solvents in SWNTs dispersibility. This information could be useful for identification of some key molecular features of solvent molecules and to find the proper solvent for SWNTs dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barman SN, Pan D, Vosgueritchian M, Zoombelt AP, Galli GBao Z (2012) Dispersion of single walled carbon nanotubes in amidine solvents. Nanotechnology 23(34):344011

    Article  CAS  Google Scholar 

  • Baskin II, Palyulin VA, Zefirov NS (2008) Neural networks in building QSAR models. Methods Mol Biol 458:137–158

    Google Scholar 

  • Basri S, Kamarudin SK, Daud WRW, Yaakub Z (2010) Nanocatalyst for direct methanol fuel cell (DMFC). Int J Hydrogen Energy 35(15):7957–7970

    Article  CAS  Google Scholar 

  • Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  CAS  Google Scholar 

  • Bergin SD, Nicolosi V, Streich PV, Giordani S, Sun Z, Windle AH, Ryan P, Niraj NPP, Wang Z-TT, Carpenter L, Blau WJ, Boland JJ, Hamilton JP, Coleman JN (2008) Towards solutions of single-walled carbon nanotubes in common solvents. Adv Mater 20(10):1876–1881

    Article  CAS  Google Scholar 

  • Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube–solvent mixtures. ACS Nano 3(8):2340–2350

    Article  CAS  Google Scholar 

  • Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35(7):637–659

    Article  CAS  Google Scholar 

  • Burden FR (1997) A chemically intuitive molecular index based on the eigenvalues of a modified adjacency matrix. Quant Struct-Act Rel 16(4):309–314

    Article  CAS  Google Scholar 

  • Cheng Q, Debnath S, Gregan E, Byrne HJ (2008) Effect of solvent solubility parameters on the dispersion of single-walled carbon nanotubes. J Phys Chem C 112(51):20154–20158

    Article  CAS  Google Scholar 

  • Detriche S, Zorzini G, Colomer JF, Fonseca A, Nagy JB (2008) Application of the hansen solubility parameters theory to carbon nanotubes. J Nanosci Nanotechnol 8(11):6082–6092

    Article  CAS  Google Scholar 

  • Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inform Comput Sci 45:839–849

    Article  CAS  Google Scholar 

  • Dresselhaus G, Dresselhaus MS, Saito R (2003) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Charlier JC, Hernandez E (2004) Electronic, thermal and mechanical properties of carbon nanotubes. Phil Trans R Soc Lond A 362:2065–2098

    Article  CAS  Google Scholar 

  • Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    Article  CAS  Google Scholar 

  • Fagan SB, Souza Filho AG, Lima JOG, Filho JM, Ferreira OP, Mazali IO, Alves OL, Dresselhaus MS (2004) 1,2-Dichlorobenzene interacting with carbon nanotubes. Nano Lett 4(7):1285–1288

    Article  CAS  Google Scholar 

  • Feng M, Han H, Zhang J, Tachikawa H (2008) Electrochemical sensors based on carbon nanotubes. Electrochemical sensors, biosensors and their biomedical applications. Academic Press, San Diego, pp 459–501

    Book  Google Scholar 

  • Frackowiak E (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787

    Article  CAS  Google Scholar 

  • Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3(8):1067–1071

    Article  CAS  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    Article  CAS  Google Scholar 

  • Geckeler K, Premkumar T (2011) Carbon nanotubes: are they dispersed or dissolved in liquids? Nanoscale Res Lett 6(1):136

    Article  Google Scholar 

  • Giordani S, Bergin SD, Nicolosi V, Lebedkin S, Kappes MM, Blau WJ, Coleman JN (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110:15708–15718

    Article  CAS  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104

    Article  CAS  Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Combi Sci 26:694–701

    Article  CAS  Google Scholar 

  • Green MJ, Behabtu N, Pasquali M, Adams WW (2009) Nanotubes as polymers. Polymer 50(21):4979–4997

    Article  CAS  Google Scholar 

  • Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286(1):216–223

    Article  CAS  Google Scholar 

  • Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nano 2(4):207–208

    Article  CAS  Google Scholar 

  • Jeffery A, Harsh C, Michael F, Natalie H, Jordan P (2010) Dispersions and Aggregation of Carbon Nanotubes Handbook of Nanophysics, CRC Press, New York.

  • Ji S, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu Dl, Ni Q, Yu XJ (2010) Carbon nanotubes in cancer diagnosis and therapy. BBA Rev Can 1:29–35

    Google Scholar 

  • Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijiao L (2004) Nanotechnology and biosensors. Biotechnol Adv 22(7):505–518

    Article  Google Scholar 

  • Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. Chem Phys Chem 5(5):619–624

    Article  CAS  Google Scholar 

  • Landi BJ, Ruf HJ, Worman JJ, Raffaelle RP (2004) Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J Phys Chem B 108:17089–17095

    Article  CAS  Google Scholar 

  • Le T, Epa VC, Burden FR, Winkler DA (2012) Quantitative structure–property relationship modeling of diverse materials properties. Chem Rev 112(5):2889–2919

    Article  CAS  Google Scholar 

  • Leach A, Gillet V (2007) An introduction to chemoinformatics. Springer, Houten

    Book  Google Scholar 

  • Leardi R (2000) Application of genetic algorithm-PLS for feature selection in spectral data sets. J Chemometr 14:643–655

    Article  CAS  Google Scholar 

  • Liu Y, Chipot C, Shao X, Cai W (2010) Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube. J Phys Chem B 114(17):5783–5789

    Article  CAS  Google Scholar 

  • Mercader AG, Duchowicz PR, Fernández FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50(9):1542–1548

    Article  CAS  Google Scholar 

  • Mercader AG, Duchowicz PR, Fernández FM, Castro EA (2011) Advances in the replacement and enhanced replacement method in QSAR and QSPR theories. J Chem Inf Model 51(7):1575–1581

    Article  CAS  Google Scholar 

  • Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113

    Article  CAS  Google Scholar 

  • Park JW, Kim J, Lee JO, Kang KC, Kim JJ, Yoo KH (2002) Effects of artificial defects on the electrical transport of single-walled carbon nanotubes. Appl Phys Lett 80(1):133–135

    Article  CAS  Google Scholar 

  • Petitjean M (1992) Applications of the radius–diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J Chem Inf Comput Sci 32(4):331–337

    Article  CAS  Google Scholar 

  • Puzyn T, Mostrag-Szlichtyng A, Gajewicz A, Skrzyński M, Worth A (2011) Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models. Struct Chem 22(4):795–804

    Article  CAS  Google Scholar 

  • Raffaelle RP, Landi BJ, Harris JD, Bailey S, GHepp AF (2005) Carbon nanotubes for power applications. Mater Sci Eng B 116(3):233–243

    Article  Google Scholar 

  • Rao CNR, Voggu R (2010) Charge-transfer with graphene and nanotubes. Mater Today 13(9):34–40

    Article  CAS  Google Scholar 

  • Rofouei MK, Salahinejad M, Ghasemi JB (2013) An alignment independent 3D-QSAR modeling of dispersibility of single-walled carbon nanotubes in different organic solvents. Fuller Nanotub Car N 21(5):367–380

    Article  Google Scholar 

  • Saini RK, Chiang IW, Peng H, Smalley RE, Billups WE, Hauge RH, Margrave JL (2003) Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc 125(12):3617–3621

    Article  CAS  Google Scholar 

  • Schmuker M, de Bruyne M, Hahnel M, Schneider G (2007) Predicting olfactory receptor neuron responses from odorant structure. Chem Cent J 1:11

    Article  Google Scholar 

  • Shin HJ, Kim SM, Yoon S-M, Benayad A, Kim KK, Kim SJ, Park HK, Choi JY, Lee YH (2008) Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J Am Chem Soc 130(6):2062–2066

    Article  CAS  Google Scholar 

  • Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  • Sinha N, Yeow JT (2005) Carbon nanotubes for biomedical applications. IEEE T NanoBioSci 4(2):180–196

    Article  Google Scholar 

  • Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  • Star A, Liu Y, Grant K, Ridvan L, Stoddart JF, Steuerman DW, Diehl MR, Boukai A, Heath JR (2003) Noncovalent side-wall functionalization of single-walled carbon nanotubes. Macromolecules 36(3):553–560

    Article  CAS  Google Scholar 

  • Sun M, Zheng Y, Wei H, Chen J, Cai J, Ji M (2009) Enhanced replacement method-based quantitative structure–activity relationship modeling and support vector machine classification of 4-anilino-3-quinolinecarbonitriles as Src kinase inhibitors. QSAR Comb Sci 28(3):312–324

    Article  CAS  Google Scholar 

  • Tarasova A, Burden F, Gasteiger J, Winkler DA (2010) Robust modelling of solubility in supercritical carbon dioxide using Bayesian methods. J Mol Graph Model 28(7):593–597

    Article  CAS  Google Scholar 

  • Topliss JG, Edwards RP (1979) Chance factors in studies of quantitative structure-activity relationships. J Chem Med 22(10):1238–1244

    Article  CAS  Google Scholar 

  • Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408(1):1–13

    Article  CAS  Google Scholar 

  • Usrey ML, Chaffee A, Jeng ESS, trano MS (2009) Application of polymer solubility theory to solution phase dispersion of single-walled carbon nanotubes. J Phys Chem C 113(22):9532–9540

    Article  CAS  Google Scholar 

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46

    Article  Google Scholar 

  • Vigolo B, Mamane V, Valsaque F, Le TNH, Thabit J, Ghanbaja J, Aranda L, Fort Y, McRae E (2009) Evidence of sidewall covalent functionalization of single-walled carbon nanotubes and its advantages for composite processing. Carbon 47(2):411–419

    Article  CAS  Google Scholar 

  • Wildman SA, Crippen GM (1999) Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci 39(5):868–873

    Article  CAS  Google Scholar 

  • Zhao YL, Stoddart JF (2009) Noncovalent functionalization of single-walled carbon nanotubes. Acc Chem Res 42(8):1161–1171

    Article  CAS  Google Scholar 

  • Zuttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlabach L (2003) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27:203–204

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Iranian National Science Foundation (INSF) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salahinejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salahinejad, M., Zolfonoun, E. QSAR studies of the dispersion of SWNTs in different organic solvents. J Nanopart Res 15, 2028 (2013). https://doi.org/10.1007/s11051-013-2028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2028-0

Keywords

Navigation