Skip to main content
Log in

Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of ~100–300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX–CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li SP, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HMM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed 51:6389–6393

    Article  Google Scholar 

  • Aw MS, Addai-Mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun 48:3348–3350

    Article  Google Scholar 

  • Bae Y, Jang W, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1:242–250

    Article  Google Scholar 

  • Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconj Chem 18:1131–1139

    Article  Google Scholar 

  • Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    Article  Google Scholar 

  • Chae SR, Hotze EM, Wiesner MR (2009) Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C-60 fullerene aggregates. Environ Sci Technol 43:6208–6213

    Article  Google Scholar 

  • Chae SR, Hotze EM, Xiao Y, Rose J, Wiesner MR (2010) Comparison of methods for fullerene detection and measurements of reactive oxygen production in cosmetic products. Environ Eng Sci 27:797–804

    Article  Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778–16785

    Article  Google Scholar 

  • Chiu YR, Ho WJ, Chao JS, Yuan CJ (2012) Enzyme-encapsulated silica nanoparticle for cancer chemotherapy. J Nanopart Res 14:829

    Article  Google Scholar 

  • Cydzik I, Bilewicz A, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) A novel method for synthesis of Co-56-radiolabelled silica nanoparticles. J Nanopart Res 14:1185

    Article  Google Scholar 

  • Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE (2004) Targeted worm micelles. Biomacromolecules 5:1714–1719

    Article  Google Scholar 

  • Dicko A, Mayer LD, Tardi PG (2010) Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin Drug Deliv 7:1329–1341

    Article  Google Scholar 

  • Dolatabadi JEN, Omidi Y, Losic D (2011) Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 7:297–314

    Article  Google Scholar 

  • Durgadas CV, Sharma CP, Paul W, Rekha MR, Sreenivasan K (2012) Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells. J Nanopart Res 14:1127

    Article  Google Scholar 

  • Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926

    Article  Google Scholar 

  • Fan JQ, Fang G, Wang XD, Zeng F, Xiang YF, Wu SZ (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology 22:455102

    Article  Google Scholar 

  • Fan JQ, Zeng F, Wu SZ, Wang XD (2012) Polymer micelle with pH-triggered hydrophobic–hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 13:4126–4137

    Google Scholar 

  • Fan JQ, Fang G, Zeng F, Wang XD, Wu SZ (2013) Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small 9:613–621

    Article  Google Scholar 

  • Frederix F, Bonroy K, Reekmans G, Laureyn W, Campitelli A, Abramov MA, Dehaen W, Maes G (2004) Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. J Biochem Biophys Methods 58:67–74

    Article  Google Scholar 

  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  Google Scholar 

  • Gulati K, Aw MS, Findlay D, Losic D (2012) Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 3:857–873

    Article  Google Scholar 

  • Guldi DM, Sgobba V (2011) Carbon nanostructures for solar energy conversion schemes. Chem Commun 47:606–610

    Article  Google Scholar 

  • Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M (2005) Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc 127:9830–9838

    Article  Google Scholar 

  • Hahn U, Engmann S, Oelsner C, Ehli C, Guldi DM, Torres T (2010) Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes. J Am Chem Soc 132:6392–6401

    Article  Google Scholar 

  • Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 347:8–12

    Article  Google Scholar 

  • He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845–5855

    Article  Google Scholar 

  • Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley HM, Silva SRP, McFadden J (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626

    Article  Google Scholar 

  • Herranz MA, Ehli C, Campidelli S, Gutierrez M, Hug GL, Ohkubo K, Fukuzumi S, Prato M, Martin N, Guldi DM (2008) Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. J Am Chem Soc 30:66–73

    Article  Google Scholar 

  • Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175–4180

    Article  Google Scholar 

  • Hotze EM, Badireddy AR, Chellam S, Wiesner MR (2009) Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Environ Sci Technol 43:6639–6645

    Article  Google Scholar 

  • Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C-60-NVP copolymer: a potential material for photodynamic therapy. Chem Commun 46:4805–4807

    Article  Google Scholar 

  • Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8:1577–1585

    Article  Google Scholar 

  • Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581

    Article  Google Scholar 

  • Kirkpatrick DL, Weiss M, Naumov A, Bartholomeusz G, Weisman RB, Gliko O (2012) Carbon nanotubes: solution for the therapeutic delivery of siRNA. Materials 5:278–301

    Article  Google Scholar 

  • Knorr FJ, Hung WC, Wai CM (2009) Aromatic electron acceptors change the chirality dependence of single-walled carbon nanotube oxidation. Langmuir 25:10417–10421

    Article  Google Scholar 

  • Kratz F, Muller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20–53

    Article  Google Scholar 

  • Lee CC, Cramer AT, Frechet JMJ (2006) An intramolecular cyclization reaction is responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin. Bioconj Chem 17:1364–1368

    Article  Google Scholar 

  • Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, Dai HJ (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  Google Scholar 

  • Liu Z, Robinson JT, Tabakman SM, Yang K, Dai HJ (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:7–8

    Google Scholar 

  • Mashat A, Deng L, Altawashi A, Sougrat R, Wang GC, Khashab NM (2012) Zippered release from polymer-gated carbon nanotubes. J Mater Chem 22:11503–11508

    Article  Google Scholar 

  • Pickering KD, Wiesner MR (2005) Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol 39:1359–1365

    Article  Google Scholar 

  • Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30:5757–5766

    Article  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  Google Scholar 

  • Rezaei B, Majidi N, Noori S, Hassan ZM (2011) Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells. J Nanopart Res 13:6339–6346

    Article  Google Scholar 

  • Roberts PC, Lamb RA, Compans RW (1998) The M1 and M2 proteins of influenza: a virus are important determinants in filamentous particle formation. Virology 240:127–137

    Article  Google Scholar 

  • Rocha JDR, Bachilo SM, Ghosh S, Arepalli S, Weisman RB (2011) Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. Anal Chem 83:7431–7437

    Article  Google Scholar 

  • Sanz V, Coley HM, Silva SRP, McFadden J (2012) Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. J Nanopart Res 14:695

    Article  Google Scholar 

  • Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  Google Scholar 

  • Schulz-Drost C, Sgobba V, Gerhards C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic–organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425–6429

    Article  Google Scholar 

  • Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331–342

    Article  Google Scholar 

  • Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802–1826

    Article  Google Scholar 

  • Song HJ, Li N, Jing X, Yang X, Tang H (2011) Synthesis and characterization of “mulberry”-like Fe3O4/multiwalled carbon nanotube nanocomposites. J Nanopart Res 13:5457–5464

    Article  Google Scholar 

  • Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, Mou CY (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 21:172–177

    Article  Google Scholar 

  • Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964

    Article  Google Scholar 

  • Weisman RB (2010) Fluorimetric characterization of single-walled carbon nanotubes. Anal Bioanal Chem 396:1015–1023

    Article  Google Scholar 

  • Xiao DL, Dramou P, He H, Lien APH, Li H, Yao YY, Chuong PH (2012) Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. J Nanopart Res 14:984

    Article  Google Scholar 

  • Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S (2010) Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconj Chem 21:496–504

    Article  Google Scholar 

  • Yu H, Jin YG, Peng F, Wang HJ, Yang J (2008) Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation. J Phys Chem C 112:6758–6763

    Article  Google Scholar 

  • Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13:248–260

    Article  Google Scholar 

  • Zhao TT, Wu H, Yao SQ, Xu QH, Xu GQ (2010) Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 26:14937–14942

    Article  Google Scholar 

  • Zheng M, Davidson F, Huang X (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790–7791

    Article  Google Scholar 

  • Zheng M, Li Z, Huang X (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20:4226–4235

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (Project No. 2013CB834702) and by NSFC (Project No. 21025415, 21174040).

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Zeng or Shuizhu Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 2807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Zeng, F., Xu, J. et al. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release. J Nanopart Res 15, 1911 (2013). https://doi.org/10.1007/s11051-013-1911-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1911-z

Keywords

Navigation