Skip to main content
Log in

Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a solid-state synthesis for SiO2 nanowires (NWs) (up to 20 microns in length and from about 40 to about 150 nm in diameter) coated by Au nanoparticles (NPs) (from about 20 to about 80 nm in diameter). This protocol is based on three steps: (1) large area production of very long SiO2 NWs on a Si surface exploiting a simple Au/Si solid-state reaction at high temperature; (2) coating of the SiO2 NWs by a Au film of desired thickness using sputtering depositions; and (3) a thermal process to induce a dewetting process of the Au-film coating the SiO2 NWs to obtain Au NPs on the curved surface of the NWs. The morphology evolution of the SiO2 NWs was followed, in each step, by scanning electron microscopy analyses. They allowed to correlate the evolution of the NPs size with the NWs sizes for different thicknesses of the starting Au-film coating the NWs and different annealing temperatures of the dewetting process. Some theoretical concepts, related to the dewetting process of a film on a curved surface were used to describe the experimental data. The main advantages of the proposed protocols include: (i) simplicity and low-cost (it is based only on sputtering depositions and thermal processes), and (ii) versatility based on the possibility of tuning Au-film thickness and annealing temperature to tune the NPs–NWs sizes ratio. These advantages can make this technique suitable for the mass production of Au NPs-coated SiO2 NWs toward applications in electronic devices, biosensors, and nanoscale optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  Google Scholar 

  • Assmus T, Balasubramanian K, Burghard M, Kern K, Scolari M, Fu N, Myalitsin A, Mews A (2007) Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl Phys Lett 90:173109

    Article  Google Scholar 

  • Baker AG, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382:1751–1770

    Article  Google Scholar 

  • Bettge M, MacLaren S, Burdin S, Wen J-G, Abraham D, Petrov I, Sammann E (2009) Low-temperature vapour–liquid–solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment. Nanotechnology 20:115607

    Article  Google Scholar 

  • Bevern CA, Dobrokhotov V, McIlroy DN, Chava S, Abdelrahaman R, Heieren A, Dick J, Barredo W (2008) Gas sensing with mats of gold-nanoparticle decorated GaN nanowires. IEEE Sens J 8:930–935

    Article  Google Scholar 

  • Bilalbegović G (2006) Electronic properties of silica nanowires. J Phys Condens Matter 18:3829–3836

    Article  Google Scholar 

  • Callegari G, Calvo A, Hulin JP (2005) Dewetting processes in a cylindrical geometry. Eur Phys J E 16:283–290

    Article  Google Scholar 

  • Chang P-H, Berman G, Shen CC (1988) Transmission electron-microscopy of gold-silicon interactions on the backside of silicon-wafers. J Appl Phys 63:1473–1477

    Article  Google Scholar 

  • Choi Y, Johnson JL, Ural A (2009) Patterned growth of silicon oxide nanowires from iron ion implanted SiO2 substrates. Nanotechnology 20:135307

    Article  Google Scholar 

  • Claessens N, Demoisson F, Dufour T, Mansour A, Felten A, Guillot J, Pireaux J-J, Reniers F (2010) Carbon nanotubes decorated with gold, platinum and rhodium clusters by injection of colloidal solutions into the post-discharge of an RF atmospheric plasma. Nanotechnology 21:385603

    Article  Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • Elechiguerra JL, Manriquez JA, Yacaman MJ (2004) Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst. Appl Phys A 79:461–467

    Article  Google Scholar 

  • Elliman RG, Wilkinson AR, Kim T-H, Sekhar PK, Bhansali S (2008a) Optical emission from erbium-doped silica nanowires. J Appl Phys 103:104304

    Article  Google Scholar 

  • Elliman RG, Wilkinson AR, Kim T-H, Sekhar PK, Bhansali S (2008b) Ion beam synthesis and doping of photonic nanostructures. Nucl Instr Meth Phys Res B 266:1362–1366

    Article  Google Scholar 

  • Eral HB, Manukyan G, Oh JM (2011) Wetting of a drop on a sphere. Langmuir 27:5340–5346

    Article  Google Scholar 

  • Evans R, Roth R, Bryk P (2003) Wetting at curved substrates: non-analytic behavior of interfacial properties. Europhys Lett 62:815–821

    Article  Google Scholar 

  • Galopin E, Barbillat J, Coffinier Y, Szunerits S, Patriarche G, Boukherroub R (2009) Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces 1:1396–1403

    Article  Google Scholar 

  • Gattass RR, Svacha GT, Tong L, Mazur E (2006) Supercontinuum generation in sub-wavelength diameter silica fibers. Opt Express 14:9408–9414

    Article  Google Scholar 

  • Gelfand MP, Lipowsky R (1987) Wetting on cylinders and spheres. Phys Rev B 36:8725–8735

    Article  Google Scholar 

  • Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17:2679–2694

    Article  Google Scholar 

  • Henley SJ, Carrey JD, Silva SRP (2005) Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys Rev B 72:195408

    Article  Google Scholar 

  • Herminghaus S, Brinkmann M, Seeman R (2008) Wetting and Dewetting of Complex Surface Geometries. Annu Rev Mater Res 38:101–121

    Article  Google Scholar 

  • Holyst R, Poniewierski A (1987) Wetting on a spherical surface. Phys Rev B 36:5628–5630

    Article  Google Scholar 

  • Hu JQ, Jiang Y, Meng XM, Lee CS, Lee ST (2003) A simple large-scale synthesis of very long aligned silica nanowires. Chem Phys Lett 367:339–343

    Article  Google Scholar 

  • Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  Google Scholar 

  • Huang T, Meng F, Qi L (2010) Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant cyclodextrin. Langmuir 26:7582–7589

    Article  Google Scholar 

  • Hwang J-S, Chen K-Y, Hong S-J, Chen S-W, Syu W-S, Lin TY, Chiang H-P, Chattopadhyay S, Chen K-H, Chen L-C (2010) The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Nanotechnology 21(2):025502. doi:10.1088/0957-4484/21/2/025502

    Article  Google Scholar 

  • Iijimma S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Indekeu JO (1988) Wetting phenomena on flat and curved surfaces. Nucl Phys B 5A:168–172

    Article  Google Scholar 

  • Jang S, Lee Y, Cho S, Kim D (2013) Synthesis and characterization of amorphous silicon oxide nanowires embedded with Ni nanoparticles. Mater Chem Phys 137:898–903

    Article  Google Scholar 

  • Joshi RK, Hu Q, Alvi F, Joshi N, Kumar A (2009) Au decorated zinc oxide nanowires for CO sensing. J Phys Chem C 113:16199–16202

    Article  Google Scholar 

  • Kang M, Trofin L, Mota MO, Martin CR (2005) Protein capture in silica nanotube membrane 3-D microwell arrays. Anal Chem 77:6243–6249

    Article  Google Scholar 

  • Kim JH, An HH, Woo HJ, Yoon CS (2008) The growth mechanism for silicon oxide nanowires synthesized from an Au nanoparticle/polyimide/Si thin film stack. Nanotechnology 19:125604

    Article  Google Scholar 

  • Kohli P, Martin CR (2005) Smart nanotubes for biotechnology. Curr Pharm Biotech 6:35–47

    Google Scholar 

  • Kumari G, Narayana C (2012) New nano architecture for SERS applications. J Phys Chem Lett 3:1130–1135

    Article  Google Scholar 

  • Kwon J-Y, Yoon T-S, Kim K-B, Min S-H (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278

    Article  Google Scholar 

  • Lee ST, Zhang YF, Wang N, Tang YH, Bello I, Lee CS (1999) Semiconductor nanowires from oxides. J Mater Res 14:4503–4507

    Article  Google Scholar 

  • Li SH, Zhu XF, Zhao YP (2004) Carbon-assisted growth of SiOx nanowires. J Phys Chem B 108:17032–17041

    Article  Google Scholar 

  • Lian J, Wang L, Sun X, Yu Q, Ewing RC (2006) Patterning metallic nanostructures by ion-beam-induced dewetting and rayleigh instability. Nano Lett 6:1047–1052

    Article  Google Scholar 

  • Lou J, Tong L, Ye Z (2005) Modeling optical wave guiding in metal-coated silica nanowires: nanophotonics, nanostructure, and nanometrology. In: Zhu X (ed) Proceedings of SPIE, vol. 5635, Bellingham, Washington, p 493–501

  • Marmur A, Krasovitski B (2002) Line tension on curved surfaces: liquid drops on solid micro and nanospheres. Langmuir 18:8919–8923

    Article  Google Scholar 

  • Mubeen S, Zhang T, Chartuprayoon N, Rheem Y, Mulchandani A, Myung NV, Deshusses MA (2010) Sensitive detection of H2S using gold nanoparticles decorated SWNTs. Anal Chem 82:250–257

    Article  Google Scholar 

  • Müller-Buschbaum P (2003) Dewetting and pattern formation in thin polymer films as investigated in real and reciprocal space. J Phys: Condens Matter 15:R1549

    Article  Google Scholar 

  • Oh YJ, Ross CA, Jung YS, Wang Y, Thompson CV (2009) Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5:860–865

    Article  Google Scholar 

  • Pan ZW, Dai ZR, Xu L, Lee ST, Wang ZL (2001) Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J Phys Chem B 105:2507–2514

    Article  Google Scholar 

  • Pan Z, Dai S, Beach DB, Lowndes DH (2003) Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium. Nano Lett 3:1279–1284

    Article  Google Scholar 

  • Paulose M, Varghese OK, Grimas CA (2003) Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth. J Nanosci Nanotechnol 3:341–346

    Article  Google Scholar 

  • Peng K-Q, Wang X, Wu X-L, Lee S-T (2009) Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett 9:3704–3709

    Article  Google Scholar 

  • Placidi E, Fanfoni M, Arciprete F, Patella F, Motta N, Balzarotti A (2000) Scaling law and dynamical exponent in the Volmer–Weber growth mode: silver on GaAs(001)2 × 4. Mater Sci Eng B 69–70:243–246

    Article  Google Scholar 

  • Qiu T, Zhou Y, Li J, Zhang W, Lang X, Cui T, Chu PK (2009) Hot spots in highly Raman-enhancing silver nanodendrities. J Phys D Appl Phys 42:175403

    Article  Google Scholar 

  • Rack PD, Guan Y, Fowlkes JD, Melechko AV, Simpson ML (2008) Pulsed laser dewetting of patterned thin metal films: a means of directed assembly. Appl Phys Lett 92:223108

    Article  Google Scholar 

  • Ruffino F, Canino A, Grimaldi MG, Giannazzo F, Bongiorno C, Roccaforte F, Raineri V (2007) Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces. J Appl Phys 101:064306

    Article  Google Scholar 

  • Ruffino F, Pugliara A, Carria E, Romano L, Bongiorno C, Spinella C, Grimaldi MG (2012) Novel approach to the fabrication of Au/silica core-shell nanostructures based on nanosecond laser irradiation of thin Au films on Si. Nanotechnology 23(4):045601

    Article  Google Scholar 

  • Sai VVR, Gangadean D, Niraula I, Jabal JMF, Corti G, McIlroy DN, Aston DE, Branen JR, Hrdlicka PJ (2011) Silica nanosprings coated with noble metal nanoparticles highly active SERS substrates. J Phys Chem C 115:453–459

    Article  Google Scholar 

  • Sangiorgi R, Muolo ML, Chatain D, Eustathopoulos N (1988) Wettability and work of adhesion of nonreactive liquid metals on silica. J Am Ceram Soc 71:742–748

    Article  Google Scholar 

  • Sekhar PK, Sambandam SN, Sood DK, Bhansali S (2006) Selective growth of silica nanowires in silicon catalysed by Pt thin film. Nanotechnology 17:4606–4613

    Article  Google Scholar 

  • Sekhar PK, Ramgir NS, Joshi RK, Bhansali S (2008a) Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology 19:245502

    Article  Google Scholar 

  • Sekhar P, Ramgir NS, Bhansali S (2008b) Metal-decorated silica nanowires: an active surface-enhanced raman substrate for cancer biomarker detection. J Phys Chem C 112:1729–1734

    Article  Google Scholar 

  • Somani PR, Somani SP, Umeno M (2008) Application of metal nanoparticles decorated carbon nanotubes in photovoltaics. Appl Phys Lett 93:033315

    Article  Google Scholar 

  • Tong L, Lou J, Mazur E (2004) Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Express 12:1025–1035

    Article  Google Scholar 

  • Tong L, Lou J, Ye Z, Svacha GT, Mazur E (2005) Self-modulated taper drawing of silica nanowires. Nanotechnology 16:1445–1448

    Article  Google Scholar 

  • Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nanotoday 3:31–37

    Article  Google Scholar 

  • Upton PJ, Indekeu JO, Yeomans JM (1989) Wetting on spherical and cylindrical substrates: global phase diagrams. Phys Rev B 40:666–679

    Article  Google Scholar 

  • Venables JA, Spiller GD, Hanbücken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459

    Article  Google Scholar 

  • Wang C-Y, Chan L-H, Xiau D-Q, Lin T-C, Shih H-C (2006) Mechanism of solid-liquid-solid on the silicon oxide nanowire growth. J Vac Sci Technol 24:613–617

    Article  Google Scholar 

  • Wu X, Dzenis YA (2006) Droplet on a fiber: Geometrical shape and contact angle. Faculty Publications from the Department of Engineering Mechanics (paper 20), Department of at DigitalCommons@University of Nebraska–Lincoln. http://digitalcommons.unl.edu/engineeringmechanicsfacpub/20. Accessed 2013

  • Zhang M, Bando Y, Wada L, Kurashima K (1999) Synthesis of nanotubes and nanowires of silicon oxide. J Mater Sci Lett 18:1911–1913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ruffino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruffino, F., Grimaldi, M.G. Au nanoparticles decorated SiO2 nanowires by dewetting on curved surfaces: facile synthesis and nanoparticles–nanowires sizes correlation. J Nanopart Res 15, 1909 (2013). https://doi.org/10.1007/s11051-013-1909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1909-6

Keywords

Navigation