Skip to main content
Log in

Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A modified ferrite co-precipitation synthesis was used to obtain core–shell Fe3O4/salicylic acid magnetic nanoparticles (Sa-MNP) with well-dispersed aqueous solution properties. The newly developed iron oxide nanoparticles properties were investigated with X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and laser light scattering for their characteristic establishment. The resulting Sa-MNPs have spherical morphology, homogenous size distribution around 60 nm (35 nm FWHM), and a 67 mV Zeta potential value (15.5 mV STDV). In vivo biocompatibility and intravascular behavior of the 60 nm diameter size range synthesized nanoparticles were evaluated on chick chorioallantoic membrane model. The results show a reversible and good controlled intravascular accumulation under static magnetic field, a low risk of embolisation with nanoparticle aggregates detached from venous intravascular nanoblocked areas, a persistent blocking of the arterioles and dependent capillaries network, a good circulating life time and biocompatibility. The beneficial effects of salicylic acid (SA) and in vivo demonstrated capacity of Sa-MNPs to cutoff regional vascular supply under static magnetic field control suggest a possible biomedical application of these MNPs in targeted cancer therapy through magnetic controlled blood flow nanoblocking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baron JA (2009) Aspirin and NSAIDs for the prevention of colorectal cancer. Recent Results Cancer Res 181:223–229

    Article  CAS  Google Scholar 

  • Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206

    Article  CAS  Google Scholar 

  • Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  Google Scholar 

  • Blacklock CJ, Lawrence JR, Wiles D, Malcolm EA, Gibson IH, Kelly CJ et al (2001) Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol 54:553–555

    Article  CAS  Google Scholar 

  • Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738

    Article  CAS  Google Scholar 

  • Chomouckaa J, Drbohlavovaa J, Huskab D, Adamb V, Kizekb R, Hubaleka J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149

    Article  Google Scholar 

  • Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ et al (2009) Aspirin for the chemoprevention of colorectal adenomas: metaanalysis of the randomized trials. J Natl Cancer I 101:256–266

    Article  CAS  Google Scholar 

  • Cole JA, Yang CV, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332

    Article  CAS  Google Scholar 

  • Faivre D, Schuler D (2008) Magnetic bacteria and magnetosomes. Chem Rev 108:4875–4898

    Article  CAS  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Article  CAS  Google Scholar 

  • Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK (2000) Biodistribution of fluoresceinated dextran using novel, nanoparticles evading reticuloendothelial system. Int J Pharm 202:1–10

    Article  CAS  Google Scholar 

  • Gruttner C, Teller J (1999) New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications. J Magn Magn Mater 194:8–15

    Article  CAS  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE T Nanobiosci 3:66–73

    Article  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  CAS  Google Scholar 

  • Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:257–344

    Article  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    Article  CAS  Google Scholar 

  • Kayal S, Ramanujan RV (2010) Anti-cancer drug loaded iron gold core–shell nanoparticles (Fe@Au) for magnetic drug targeting. J Nanosci Nanotechnol 10:1–13

    Article  Google Scholar 

  • Laurent S, Dutz S, Häfeli OU, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Edit 46:1222–1244

    Article  CAS  Google Scholar 

  • Luo T, Yan HM, He P, Luo Y, Yang YF, Zheng H (2012) Aspirin use and breast cancer risk: a meta-analysis. Breast Cancer Res Tr 131(2):581–587

    Article  CAS  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  CAS  Google Scholar 

  • Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharm 403:139–161

    Article  CAS  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, Vonrechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  • Paterson JR, Lawrence JR (2001) Salicylic acid: a link between aspirin, diet and the prevention of colorectal cancer. Q J Med 94:445–448

    Article  CAS  Google Scholar 

  • Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51

    Article  CAS  Google Scholar 

  • Purushotham S, Ramanujan RV (2010) Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater 6:502–510

    Article  CAS  Google Scholar 

  • Qianqian O, Lei Z, Shengguo Z, Huijuan G, Junjie H, Yinyin X et al (2012) Self-templated synthesis of bifunctional Fe3O4@MgSiO3 magnetic sub-microspheres for toxic metal ions removal. Chem Eng J 180:121–127

    Article  Google Scholar 

  • Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276

    Google Scholar 

  • Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296:947–956

    Article  Google Scholar 

  • Schreinmachers DM, Everson RB (1994) Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5:138–146

    Article  Google Scholar 

  • Singh N, Jenkins G, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. doi:10.3402/nano.v1i0.5358

    Google Scholar 

  • Sokolov ND (1984) On the mechanism of the broadening of the proton vibrational IR band in weak hydrogen bonds.Double adiabatic approximation. J Mol Liq 29:231–242

    Article  CAS  Google Scholar 

  • Spitz GA, Furtado CM, Sola-Penna M, Zancan P (2009) Acetylsalicylic acid and salicylic acid decrease tumor cell viability and glucose metabolism modulating 6-phosphofructo-1-kinase structure and activity. Biochem Pharmacol 77:46–53

    Article  CAS  Google Scholar 

  • Taupitz M, Schnorr J, Abramjuk C, Wagner S, Pilgrimm H, Hunigen H et al (2000) New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits. J Magn Reson Imaging 12:905–911

    Article  CAS  Google Scholar 

  • Taupitz M, Schnorr J, Wagner S, Abramjuk C, Pilgrimm H, Kivelitz D et al (2002) Coronary MR angiography: experimental results with a mono-mer-stabilized blood pool contrast medium. Radiology 222:120–126

    Article  Google Scholar 

  • Vainio H, Morgan G (1998) Cyclo-oxygenase 2 and breast cancer prevention. BMJ 317:828–830

    Article  CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Mîndrilă.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaiescu, D.E., Buteică, A.S., Neamţu, J. et al. Fe3O4/Salicylic acid nanoparticles behavior on chick CAM vasculature. J Nanopart Res 15, 1857 (2013). https://doi.org/10.1007/s11051-013-1857-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1857-1

Keywords

Navigation