Skip to main content
Log in

Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Bismuth-doped TiO2 nanotubes (Bi-TNT) were successfully synthesized by combination of sol–gel and hydrothermal methods. The synthesized photocatalyst was efficiently used for degradation of rhodamine B (RhB) dye under direct sunlight irradiation. Subsequent characterization of synthesized photocatalysts was carried out using PXRD, SEM, TEM, EDX, FT-IR, Raman, N2 adsorption, TPD-NH3, UV–Vis DRS, XRF and ICP techniques. The surface area of the TiO2 nanoparticles increased after tubular structure formation (TiO2 nanoparticles—114.21 m2/g, TiO2 nanotube—191.93 m2/g). The degradation studies revealed that initial rate of photocatalytic degradation of RhB dye using Bi-TNT was 5.56, 4.16, 1.30 and 2.38 times higher as compared to TNP, Bi-TNP, TNT and Degussa P-25 TiO2 (P-25), respectively, under direct sunlight irradiation. The enhanced photocatalytic activity of Bi-TNT may be due to the increase in the surface area and Bi doping, which leads to effective separation of photogenerated carriers. The degradation was confirmed by chemical oxygen demand, total organic carbon and total inorganic carbon analysis of the degraded dye solutions. The probable degradation mechanism of RhB dye has also been proposed using liquid chromatography-mass spectrometry analysis of degraded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  • Adachi M, Murata Y, Harada M, Yoshikawa S (2000) Formation of titania nanotubes with high photo-catalytic activity. Chem Lett 29:942–943

    Article  Google Scholar 

  • Akita T, Okumura M, Tanaka K, Ohkuma K, Kohyama M, Koyanagi T, Date M, Tsubota S, Haruta M (2005) Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst. Surf Interface Anal 37:265–269

    Article  CAS  Google Scholar 

  • Anamt MN, Radiman S, Huang NM, Yarmo MA, Ariyanto NP, Lim HN, Muhamad MR (2010) Sol–gel hydrothermal synthesis of bismuth-TiO2 nanocubes for dye-sensitized solar cell. Ceram Int 36:2215–2220

    Article  CAS  Google Scholar 

  • Anandan S, Sathish Kumar P, Pugazhenthiran N, Madhavan J, Maruthamuthu P (2008) Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88. Sol Energy Mater Sol Cells 92:929–937

    Article  CAS  Google Scholar 

  • Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42:276–282

    Article  CAS  Google Scholar 

  • Barakat MA, Schaeffer H, Hayes G, Shah SI (2004) Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles. Appl Catal B Environ 57:23–30

    Article  CAS  Google Scholar 

  • Bassi AL, Cattaneo D, Russo V, Bottani CE, Barborini E, Mazza T, Piseri P, Milani P, Ernst FO, Wegner K, Pratsinis SE (2005) Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. J Appl Phys 98(074305):1–9

    Google Scholar 

  • Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    Article  CAS  Google Scholar 

  • Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824

    Article  CAS  Google Scholar 

  • Carneiro JT, Savenije TJ, Moulijn JA, Mul G (2010) Toward a physically sound structure-activity relationship of TiO2-based photocatalysts. J Phys Chem C 114:327–332

    Article  CAS  Google Scholar 

  • Chandran AR, Pal S, Medda SK, De G (2012) Au@MO2 (M = Ti, Zr, Si) films by ex situ incorporation approach. Sci Adv Mater 4:663–668

    Article  CAS  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Dang TMD, Nguyen TMH, Nguyen HP (2010) The preparation of nano-gold catalyst supported on iron doped titanium oxide. Adv Nat Sci Nanosci Nanotechnol 1:025011

    Article  CAS  Google Scholar 

  • Deng LX, Wang SR, Liu DY, Zhu BL, Huang WP, Wu SH, Zhang SM (2009) Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal Lett 129:513–518

    Article  CAS  Google Scholar 

  • Domen K, Kudo A, Onishi T (1986) Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO–SrTiO3. J Catal 102:92–98

    Article  CAS  Google Scholar 

  • Fang J, Shi FC, Bu J, Ding JJ, Xu ST, Bao J, Ma YS, Jiang ZQ, Zhang WP, Gao C, Huang WX (2010) One-step synthesis of bifunctional TiO2 catalysts and their photocatalytic activity. J Phys Chem C 114:7940–7948

    Article  CAS  Google Scholar 

  • Feng H, Zhang MH, Yu LE (2012) Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO2. Appl Catal A Gen 413–414:238–244

    Article  CAS  Google Scholar 

  • Fu HB, Zhang SC, Xu TG, Zhu YF, Chen JM (2008) Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol 42:2085–2091

    Article  CAS  Google Scholar 

  • Fu J, Tian Y, Chang B, Xi F, Dong X (2013) Facile fabrication of N-doped TiO2 nanocatalyst with superior performance under visible light irradiation. J Solid State Chem 199:280–286

    Article  CAS  Google Scholar 

  • Ganesh I, Gupta AK, Kumar PP, Sekhar PSC, Radha K, Padmanabham G, Sundararajan G (2012) Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications. Mater Chem Phys 135:220–234

    Article  CAS  Google Scholar 

  • Gratzel M (1988) Heterogeneous photochemical electron transfer. CRC Press, Boca Raton

    Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  • Guo GM, Yu BB, Yu P, Chen X (2009) Synthesis and photocatalytic applications of Ag/TiO2-nanotubes. Talanta 79:570–575

    Article  CAS  Google Scholar 

  • Guo C, Xu J, He Y, Zhang Y, Wang Y (2011) Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation. Appl Surf Sci 257:3798–3803

    Article  CAS  Google Scholar 

  • Hamze N, Dabir B, Kalbasi M, Derakhshan AA, Rajabi L, Momeni MM (2012) Synthesis and characterization of MWCNT-boehmite/TiO2 nanocomposite as an excellent oxidative catalyst for diesel desulfurization. J Nanoeng Nanomanuf 2:234–240

    Article  CAS  Google Scholar 

  • He Z, Sun C, Yang SG, Ding YC, He H, Wang ZL (2009) Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: mechanism and pathway. J Hazard Mater 162:1477–1486

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi WY, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hosseinnia A, Keyanpour-Rad M, Pazouki M (2010) Photo-catalytic degradation of organic dyes with different chromophores by synthesized nanosize TiO2 particles. World Appl Sci J 8:1327–1332

    CAS  Google Scholar 

  • Hsieh CT, Fan WS, Chen WY, Lin JY (2009) Adsorption and visible-light-derived photocatalytic kinetics of organic dye on Co-doped titania nanotubes prepared by hydrothermal synthesis. Sep Purif Technol 67:312–318

    Article  CAS  Google Scholar 

  • Huang LH, Sun C, Liu YL (2007) Pt/N-codoped TiO2 nanotubes and its photocatalytic activity under visible light. Appl Surf Sci 253:7029–7035

    Article  CAS  Google Scholar 

  • Huang J, Ho W, Lee FSC (2012a) Facile synthesis of visible-light-activated F-doped TiO2 hollow spheres by ultrasonic spray pyrolysis. Sci Adv Mater 4:863–868

    Article  CAS  Google Scholar 

  • Huang J, Cheuk W, Wu Y, Lee FSC, Ho W (2012b) Fabrication of Bi-doped TiO2 spheres with ultrasonic spray pyrolysis and investigation of their visible-light photocatalytic properties. J Nanotechnol 2012:1–7

    Google Scholar 

  • Hussian ST, Siddiqa A (2011) Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants. Int J Environ Sci Technol 8:351–362

    Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Ji T, Yang F, Lv Y, Zhou J, Sun J (2009) Synthesis and visible-light photocatalytic activity of Bi-doped TiO2 nanobelts. Mater Lett 63:2044–2046

    Article  CAS  Google Scholar 

  • Jiang Z, Yang F, Luo NJ, Chu BTT, Sun DY, Shi HH, Xiao TC, Edwards PP (2008) Solvothermal synthesis of N-doped TiO2 nanotubes for visible-light-responsive photocatalysis. Chem Commun 47:6372–6374

    Article  CAS  Google Scholar 

  • Jin Z, Fei GT, Hu XY, Wang M, Zhang LD (2012) Synthesis and photocatalytic activity of Cu2O/TiO2 double wall nanotube arrays. J Nanoeng Nanomanuf 2:49–53

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  • Khan MA, Yang OB (2009) Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube. Catal Today 146:177–182

    Article  CAS  Google Scholar 

  • Khan MA, Akhtar MS, Woo SI, Yang OB (2008) Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun 10:1–5

    Article  CAS  Google Scholar 

  • Lazar MA, Tayade RJ, Bajaj HC, Jasra RV (2012) Correlation of surface properties and photocatalytic activity of nanocrystalline TiO2 on the synthesis route. Nano Hybrids 1:57–80

    Article  CAS  Google Scholar 

  • Li J, Zhen D, Sui G, Zhang C, Deng Q, Jia L (2012) Nanocomposite of Cu–TiO2–SiO2 with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J Nanosci Nanotechnol 12:6265–6270

    Article  CAS  Google Scholar 

  • Liang HC, Li XZ, Nowonty J (2010) Photocatalytical properties of TiO2 nanotubes. Solid State Phenom 162:295–328

    Article  CAS  Google Scholar 

  • Lin X, Huang T, Huang F, Wang W, Shi J (2006) Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J Phys Chem B 110:24629–24634

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces—principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Liu F, Lai S, Huang P, Liu Y, Xu Y, Fang Y, Zhou W (2012) Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping. J Nanosci Nanotechnol 12:8391–8395

    Article  CAS  Google Scholar 

  • Madhavan AA, Kumar GG, Kalluri S, Joseph J, Nagarajan S, Nair S, Subramanian KRV, Balakrishnan A (2012) Effect of embedded plasmonic Au nanoparticles on photocatalysis of electrospun TiO2 nanofibers. J Nanosci Nanotechnol 12:7963–7967

    Article  CAS  Google Scholar 

  • Mahlambi MM, Mishra AK, Mishra SB, Krause RW, Mamba BB, Raichur AM (2012) Effect of metal ions (Ag, Co, Ni, and Pd) on the visible light degradation of rhodamine B by carbon-covered alumina-supported TiO2 in aqueous solutions. Ind Eng Chem Res 52:1783–1794

    Article  CAS  Google Scholar 

  • Mills A, Lee SK (2002) A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A 152:233–247

    Article  CAS  Google Scholar 

  • Murcia-Lopez S, Hidalgo MC, Navio JA (2011) Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation. Appl Catal A Gen 404:59–67

    CAS  Google Scholar 

  • Nakahira A, Kubo T, Numako C (2010) Formation mechanism of TiO2-derived titanate nanotubes prepared by the hydrothermal process. Inorg Chem 49:5845–5852

    Article  CAS  Google Scholar 

  • Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of rhodamine B dye. Chem Eng J 169:126–134

    Article  CAS  Google Scholar 

  • Oliveira HG, Fitzmorris BC, Longo C, Zhang JZ (2012) Photoelectrochemical and photocatalytic properties of TiO2, WO3 and WO3–TiO2 porous films in the photodegradation of rhodamine 6G in aqueous solution. Sci Adv Mater 4:673–680

    Article  CAS  Google Scholar 

  • Ou HH, Lo SL (2007) Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol 58:179–191

    Article  CAS  Google Scholar 

  • Pan L, Zou JJ, Liu XY, Liu XJ, Wang S, Zhang X, Wang L (2012) Visible-light-induced photodegradation of rhodamine B over hierarchical TiO2: effects of storage period and water-mediated adsorption switch. Ind Eng Chem Res 51:12782–12786

    Article  CAS  Google Scholar 

  • Perez-Estrada LA, Aguera A, Hernando MD, Malato S, Fernandez-Alba AR (2008) Photo degradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products. Chemosphere 70:2068–2075

    Article  CAS  Google Scholar 

  • Prasad GK (2009) Silver ion exchanged titania nanotubes for decontamination of 2 chloro ethyl phenyl sulphide and dimethyl methyl phosphonate. J Sci Ind Res 68:379–384

    CAS  Google Scholar 

  • Qianqian Z, Tang B, Guoxin H (2011) High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. J Hazard Mater 198:78–86

    Article  CAS  Google Scholar 

  • Rangel R, Mercado GJL, Bartolo-Pérez P, García R (2012) Nanostructured-[CeO2, La2O3, C]/TiO2 catalysts for lignin photodegradation. Sci Adv Mater 4:573–578

    Article  CAS  Google Scholar 

  • Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Article  CAS  Google Scholar 

  • Rengaraj S, Li XZ, Tanner PA, Pan ZF, Pang GKH (2006) Photocatalytic degradation of methylparathion—an endocrine disruptor by Bi3+-doped TiO2. J Mol Catal A Chem 247:36–43

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344

    Article  CAS  Google Scholar 

  • Sekino T (2010) Synthesis and applications of titanium oxide nanotubes. Top Appl Phys 117:17–32

    Article  CAS  Google Scholar 

  • Seo MK, Park SJ (2011) Synthesis of mesoporous anatase TiO2 nanotubes by a hydrothermal treatment and their use in solid-state dye-sensitized solar cells. J Nanosci Nanotechnol 11:4633–4638

    Article  CAS  Google Scholar 

  • Seo HK, Elliott CM, Ansari SG (2012) Enhanced photocatalytic properties of nanoclustered P-doped TiO2 films deposited by advanced atmospheric plasma jet. J Nanosci Nanotechnol 12:6996–7001

    Article  CAS  Google Scholar 

  • Shao M, Huang J, Xu X (2012) Fabrication of TiO2 nanotubes and their advanced nanostructures. Rev Adv Sci Eng 2:19–37

    Article  Google Scholar 

  • Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixture with an X-ray diffractometer. Anal Chem 29:760–762

    Article  CAS  Google Scholar 

  • Tang JW, Zou ZG, Ye JH (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43:4463–4466

    Article  CAS  Google Scholar 

  • Tassalit D, Laoufi AN, Bentahar F (2011) Photocatalytic deterioration of tylosin in an aqueous suspension using UV/TiO2. Sci Adv Mater 3:944–948

    Article  CAS  Google Scholar 

  • Tayade RJ, Key DL (2010) Synthesis and characterization of titanium dioxide nanotubes for photocatalytic degradation of aqueous nitrobenzene in the presence of sunlight. Mater Sci Forum 657:62–74

    Article  CAS  Google Scholar 

  • Tayade RJ, Kulkrani RG, Jasra RV (2006) Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45:5231–5238

    Article  CAS  Google Scholar 

  • Tayade RJ, Surolia PK, Kulkrani RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462

    Article  CAS  Google Scholar 

  • Tayade RJ, Bajaj HC, Jasra RV (2011) Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts. Desalination 275:160–165

    Article  CAS  Google Scholar 

  • Thomas J, Yoon M (2012) Facile synthesis of pure TiO2 (B) nanofibers doped with gold nanoparticles and solar photocatalytic activities. Appl Catal B Environ 111–112:502–508

    Article  CAS  Google Scholar 

  • Thomas J, Kumar KP, Mathew S (2011) Enhancement of sunlight photocatalysis of nano TiO2 by Ag nanoparticles stabilized with d-glucosamine. Sci Adv Mater 3:59–65

    Article  CAS  Google Scholar 

  • Vijayan BK, Dimitrijevic NM, Wu J, Gray KA (2010) The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C 114:21262–21269

    Article  CAS  Google Scholar 

  • Wang J, Jing L, Xue L, Qu Y, Fu H (2008) Enhanced activity of bismuth-compounded TiO2 nanoparticles for photocatalytically degrading rhodamine B solution. J Hazard Mater 160:208–212

    Article  CAS  Google Scholar 

  • Wang J, Li C, Zhang L, Li J, Li Y, Han G, Xu R, Zhang X (2010) Solar photocatalytic degradation of rhodamine B by heat treated nanometer anatase TiO2 powder. Inorg Mater 46:965–970

    Article  CAS  Google Scholar 

  • Wu Y, Lu G, Li S (2009) The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of rhodamine B. J Phys Chem C 113:9950–9955

    Article  CAS  Google Scholar 

  • Xie J, Lu X, Liu J, Shu H (2009) Brookite titania photocatalytic nanomaterials: synthesis, properties, and applications. Pure Appl Chem 81(2407):2415

    Google Scholar 

  • Xu XH, Wang M, Hou Y, Yao WF, Wang D, Wang H (2002) Preparation and characterization of Bi-doped TiO2 photocatalyst. J Mater Sci Lett 21:1655–1656

    Article  CAS  Google Scholar 

  • Xu JC, Lu M, Guo XY, Li HL (2005) Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. J Mol Catal A Chem 226:123–127

    Article  CAS  Google Scholar 

  • Xu J, Chen M, Fu D (2011) Study on highly visible light active Bi-doped TiO2 composite hollow sphere. Appl Surf Sci 257:7381–7386

    Article  CAS  Google Scholar 

  • Xu DS, Li JM, Yu YX, Li JJ (2012) From titanates to TiO2 nanostructures: controllable synthesis, growth mechanism, and applications. Sci China Chem 55:2334–2345

    Article  CAS  Google Scholar 

  • Yu J, Liu S, Xiu Z, Yu W, Feng G (2008a) Combustion synthesis and photocatalytic activities of Bi3+-doped TiO2 nanocrystals. J Alloys Compd 461:L17–L19

    Article  CAS  Google Scholar 

  • Yu Y, Wu HH, Zhu BL, Wang SR, Huang WP, Wu SH, Zhang SM (2008b) Preparation, characterization and photocatalytic activities of F-doped TiO2 nanotubes. Catal Lett 121:165–171

    Article  CAS  Google Scholar 

  • Yu K, Yang SG, He H, Sun C, Gu CG, Ju YM (2009) Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J Phys Chem A 113:10024–10032

    Article  CAS  Google Scholar 

  • Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

  • Zhang SM, Chen YY, Yu Y, Wu HH, Wang SR, Zhu BL, Huang WP, Wu SH (2008) Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. J Nanopart Res 10:871–875

    Article  CAS  Google Scholar 

  • Zhang LS, Wang HL, Chen ZG, Wong PK, Liu JS (2011) Bi2WO6 micro/nano-structures: synthesis, modifications and visible-light-driven photocatalytic applications. Appl Catal B 106:1–13

    Article  CAS  Google Scholar 

  • Zhao X, Li H, Wang HS, Zhong Z (2011) Preparation of mesoporous Ag-TiO2 thin films by a simple photocatalytic deposition method and their application as photocatalyst. Sci Adv Mater 3:984–988

    Article  CAS  Google Scholar 

  • Zuo H, Sun J, Deng K, Su R, Wei F, Wang D (2007) Preparation and characterization of Bi3+-TiO2 and its photocatalytic activity. Chem Eng Technol 30:577–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Department of Science and Technology (DST) for funding a project under “Fast Track Proposals for Young Scientists Scheme—(SR/FT/CS-027/2009).” TSN thanks CSIR, New Delhi, for Senior Research Fellowship (File No: 31/28(162)/2012-EMR-I). We are also thankful to Analytical Discipline and Centralized Instrument Facility of the institute and Dr. Pragnya Bhatt, Dr. D. N. Srivastava, Mr. Jayesh C. Chaudhari, Mr. Rajesh Patidar, Mr. A. K. Das, Mr. V. K. Agarwal, Mr. Satyaveer Gothwal, Mr. Mithul, Mr. K. Munusamy and Mr. Manoj C Raj for their kind support. We also thank Mr. V. M. Ashwin Kumar, Spectroscopy Analytical Test Facility, Society for Innovation and Development, IISc, Bangalore, for Raman spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh J. Tayade.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natarajan, T.S., Natarajan, K., Bajaj, H.C. et al. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J Nanopart Res 15, 1669 (2013). https://doi.org/10.1007/s11051-013-1669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1669-3

Keywords

Navigation