Skip to main content

Advertisement

Log in

Reinforced plastics and aerogels by nanocrystalline cellulose

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19

    Article  CAS  Google Scholar 

  • Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57:651–659

    Article  CAS  Google Scholar 

  • Auad ML, Mosiewicki MA, Richardson T, Aranguren MI, Marcovich NE (2010) Nanocomposites made from cellulose nanocrystals and tailored segmented polyurethanes. J Appl Polym Sci 115:1215–1225

    Article  CAS  Google Scholar 

  • Auad ML, Richardson T, Orts WJ, Medeiros ES, Mattoso LHC, Mosiewicki MA, Marcoviche NE, Arangurene MI (2011) Polyaniline-modified cellulose nanofibrils as reinforcement of a smart polyurethane. Polym Int 60:743–750

    Article  CAS  Google Scholar 

  • Azouz AB, Ramires E, van den Fonteyne W, El Kissi N, Dufresne A (2012) A simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240

    Article  CAS  Google Scholar 

  • Azzam F, Heux L, Putaux J-L, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659

    Article  CAS  Google Scholar 

  • Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125:2882–2889

    Article  CAS  Google Scholar 

  • Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507

    Article  CAS  Google Scholar 

  • Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level-off degree of polymerization. Relation to polyphase structure of cellulose fibers. Ind Eng Chem 48:333–335

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Bonini C, Heux L, Cavaille J-Y, Lindner P, Dewhurst C, Terech P (2002) Rod-like cellulose whiskers coated with surfactant: a SANS characterization. Langmuir 18:3311–3314

    Article  CAS  Google Scholar 

  • Bordel D, Putaux J-L, Heux L (2006) Orientation of native cellulose in an electric field. Langmuir 22:4899–4901

    Article  CAS  Google Scholar 

  • Borges AC, Eyholzer C, Duc F, Bourban P-E, Tingaut P, Zimmermann T, Pioletti DP, Manson J-AE (2011) Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulpous. Acta Biomater 7:3412–3421

    Article  CAS  Google Scholar 

  • Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079

    Article  CAS  Google Scholar 

  • Callister JD Jr (ed) (1994) Materials science and engineering: an introduction. Wiley, New York, 1994, p 530

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008a) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008b) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137–7145

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Magalhães WLE, Rojas OJ, Lucia LA (2011) Cellulose nanocrystals-based nanocomposites: fruits of a novel biomass research and teaching platform. Curr Sci 100:1172–1176

    CAS  Google Scholar 

  • Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718

    Article  CAS  Google Scholar 

  • Chazeau L, Cavaille JY, Perez J (2000) Plasticized PVC reinforced with cellulose whiskers. II. Plastic behavior. J Polym Sci, Part B: Polym Phys 38:383–392

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Li Q, Liu Y, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7:10360–10368

    Article  CAS  Google Scholar 

  • Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7:2522–2530

    Article  CAS  Google Scholar 

  • Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Coll Surf A: Physicochem Eng Aspects 325:44–51

    Article  CAS  Google Scholar 

  • Cranston ED, Gray DG, Rutland MW (2010) Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26:17190–17197

    Article  CAS  Google Scholar 

  • Dalmas F, Chazeau L, Gauthier C, Cavaille J-Y, Dendievel R (2006) Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites. Polymer 47:2802–2812

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaillé J-Y, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  CAS  Google Scholar 

  • de Menezes A, Jr Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterisation of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  CAS  Google Scholar 

  • de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  CAS  Google Scholar 

  • de Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and rotational dynamics of rod like cellulose whiskers. Langmuir 19:24–29

  • Diddens I, Murphy B, Krisch M, Muller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Biomacromolecules 41:9755–9759

    Article  CAS  Google Scholar 

  • Ding WQ, Calabri L, Chen XQ, Kohhaas KM, Ruoff RS (2006) Mechanics of crystalline boron nanowires. Compos Sci Technol 66:1112–1124

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dorris A, Gray DG (2012) Gelation of cellulose nanocrystal suspensions in glycerol. Cellulose 19:687–694

    Article  CAS  Google Scholar 

  • Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaille J-Y, Chanzy H (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8:197–207

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  CAS  Google Scholar 

  • Evans R, Newman RH, Roick UC (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, x-ray diffraction and solid state NMR results. Holzforschung 49:498–504

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1994) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carb Polym 87:1596–1605

    Article  CAS  Google Scholar 

  • Gao Z, Peng J, Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohydr Polym 87:2068–2075

    Google Scholar 

  • Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal-structures of cellulose IV1 and cellulose IV11. Can J Chem 63:173–180

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of x-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575

    Article  CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225

    Article  CAS  Google Scholar 

  • Gindl W, Schöberl T (2004) The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Comp Part A 35:1345–1349

    Article  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011a) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465

    Article  CAS  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011b) Poly(ɛ-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: Morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538

    Article  CAS  Google Scholar 

  • Gong G, Mathew AP, Oksman K (2011) Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polym Compos 32:1492–1498

    Article  CAS  Google Scholar 

  • Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43:2645–2651

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    Article  CAS  Google Scholar 

  • Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(e-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerisation. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  • Hajji P, Cavaillé JY, Favier V, Gauthier C, Viger G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17:612–619

    Article  CAS  Google Scholar 

  • Hao J, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67

    Article  CAS  Google Scholar 

  • Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) Confirmation of existence of cellulose III(I), III(II), IV(I), and IV(II) by X-ray method. J Polym Sci Polym Lett 13:23–27

    Article  CAS  Google Scholar 

  • He J, Cui S, Wang S-Y (2008) Preparation and crystalline analysis of high-grade bamboo dissolving pulp for cellulose acetate. J Appl Polym Sci 107:1029–1038

    Article  CAS  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    Article  CAS  Google Scholar 

  • Herrera NV, Mathew AP, Wang LY, Oksman K (2011) Randomly oriented and aligned cellulose fibres reinforced with cellulose nanowhiskers, prepared by electrospinning. Plast, Rubber Compos 40:57–64

    Article  CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1987) CP/MAS 13C NMR spectra of the crystalline components of native celluloses. Macromolecules 20:2117–2120

    Article  CAS  Google Scholar 

  • Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J Mater Sci 47:2675–2686

    Article  CAS  Google Scholar 

  • Hult LE, Iversen T, Sugiyama J (2003) Characterization of the supramolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  • Innventia (2011) Nanocellulose. http://www.innventia.com/en/Our-Expertise/New-materials/Nanocellulose. Accessed 28 November 2012

  • Ioelovich M, Leykin A, Fogovsky O (2010) Study of cellulose paracrystallinity. Bioresources 5:1393–1407

    CAS  Google Scholar 

  • Jaswon A, Gillis PP, Mark RE (1968) The elastic constants of crystalline native cellulose. Proc R Soc Lond A 306:389–412

    Article  CAS  Google Scholar 

  • Jean B, Dubreuil F, Heux L, Cousin F (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458

    Article  CAS  Google Scholar 

  • Job S (2011) Plastics from fruit derived nanocellulose in car parts. https://connect.innovateuk.org/web/biocomposites/articles/-/blogs/plastics-from-fruit-derived-nanocellulose-in-car-parts. Accessed 28 November 2012

  • John MJ, Anandjiwala R, Oksman K, Mathew AP (2012) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127:274–281

    Article  CAS  Google Scholar 

  • Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345

    Article  CAS  Google Scholar 

  • Kettunen M, Silvennoinen R, Houbenov N, Nykaenen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstroem T (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21:510–517

    Article  CAS  Google Scholar 

  • Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  • Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034–2037

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill Professional, New York

    Google Scholar 

  • Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility, and reactivity. Gordon and Breach Science Publishers, Yverdon

    Google Scholar 

  • Krishnamachari P, Hashaikeh R, Tiner M (2011) Modified cellulose morphologies and its composites; SEM and TEM analysis. Micron 42:751–761

    Article  CAS  Google Scholar 

  • Kvien I, Oksman K (2007) Orientation of cellulose nanowhiskers in polyvinyl alcohol (PVA). Appl Phys A Mater Sci Process 87:641–643

    Article  CAS  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  CAS  Google Scholar 

  • Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30:283–290

    Article  CAS  Google Scholar 

  • Lam E, Leung ACW, Liu Y, Majid E, Hrapovic S, Male KB, Luong JHT (2013) A green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of by-products. ACS Sustainable Chem Eng 1:278–283

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS C-13 NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lee J, Deng Y (2012) Increased mechanical properties of aligned and isotropic electrospun PVA nanofiber webs by cellulose nanowhisker reinforcement. Macromol Res 20:76–83

    Article  CAS  Google Scholar 

  • Lemke CH (2011) Structural analysis of nanocrystalline cellulose using solid-state NMR. Dissertation, University of British Columbia

  • Leung CW, Luong JHT, Hrapovic S, Lam E, Liu Y, Male K, Mahmoud K, Rho D (2010) Canada Patent 000372

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  Google Scholar 

  • Li Y, Ragauskas AJ (2012) Ethanol organosolv lignin-based rigid polyurethane foam reinforced with cellulose nanowhiskers. RSC Adv 2:3347–3351

    Article  CAS  Google Scholar 

  • Li R, Zhang Y, Zhu L, Yao J (2012a) Fabrication and characterization of silk fibroin/poly(ethylene glycol)/cellulose nanowhisker composite films. J Appl Polym Sci 124:2080–2086

    Article  CAS  Google Scholar 

  • Li W, Yue J, Liu S (2012b) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19:479–485

    Article  CAS  Google Scholar 

  • Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng J, Yu J (2011a) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842

    Article  CAS  Google Scholar 

  • Lin N, Yu J, Chang PR, Li J, Huang J (2011b) Poly(butylene succinate)-based biocomposites filled with polysaccharide nanocrystals: structure and properties. Polym Compos 32:472–482

    Article  CAS  Google Scholar 

  • Lina N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B 85:270–279

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047

    Article  CAS  Google Scholar 

  • Liu H, Laborie M-PG (2011) Bio-based nanocomposites by in situ cure of phenolic prepolymers with cellulose whiskers. Cellulose 18:619–630

    Article  CAS  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Biores Technol 101:5685–5692

    Article  CAS  Google Scholar 

  • Ljungberg N, Cavaille J-Y, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  • López-Suevos F, Eyholzer C, Bordeanu N, Richter K (2010) DMA analysis and wood bonding of PVAc latex reinforced with cellulose nanofibrils. Cellulose 17:387–398

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2009) Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes. Nanotechnol 20:415604

    Article  CAS  Google Scholar 

  • Luiz De Paula E, Mano V, Pereira FV (2011) Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d,l-lactide). Polym Degrad Stab 96:1631–1638

    Article  CAS  Google Scholar 

  • Magalhães WLE, Cao X, Lucia LA (2009) Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir 25:13250–13257

    Article  CAS  Google Scholar 

  • Majoinen J, Walther A, McKee J, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006

    Article  CAS  Google Scholar 

  • Marchessault RH, Sarko A (1967) X-ray structure of polysaccharides. Adv Carbohydr Chem 22:421–482

    Article  CAS  Google Scholar 

  • Mark H (1940) Intermicellar hole and tube system in fiber structure. J Phys Chem 44:764–787

    Article  CAS  Google Scholar 

  • Matsumura H, Glasses WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253

    Article  CAS  Google Scholar 

  • Mendez J, Annamalai PK, Eichhorn SJ, Rusli R, Rowan SJ, Foster EJ, Weder C (2011) Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect. Macromolecules 44:6827–6835

    Article  CAS  Google Scholar 

  • Meyer KH, Misch L (1937) Positions des atomes dans le nouveau modèle spatial de la cellulose. Helv Chim Acta 20:232–244

    Article  CAS  Google Scholar 

  • Miller AF, Donald AM (2003) Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules 4:510–517

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286

    Article  CAS  Google Scholar 

  • Newman RH (2004) Homogeneity in cellulose crystallinity between samples of Pinus radiata wood. Holzforschung 58:91–96

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kuga S, Wada M, Okano T (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30:6395–6397

    Article  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen bonding system in cellulose Ia from synchrotron X-ray and neutron fibrious diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogués J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat Nanotechnol 5:584–588

    Article  CAS  Google Scholar 

  • Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux J-L, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13:850–856

    Article  CAS  Google Scholar 

  • Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berlund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Heiden PA, Yassara RS (2012a) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27:528–536

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Yassar RS (2012b) Elastic properties of thin poly(vinylalcohol)–cellulose nanocrystal membranes. Nanotechnology 23:085706

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Yassar RS (2012c) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Compos Sci Technol 72:314–319

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotech Biofuels 3:10

    Article  CAS  Google Scholar 

  • Pasquini D, Teixeira EM, Curvelo AAS, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crops Prod 32:486–490

    Article  CAS  Google Scholar 

  • Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berlund LA (2011) Strong nanocomposite reinforcement effects in polyurethane elastomer with low volume fraction of cellulose nanocrystals. Macromolecules 44:4422–4427

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  CAS  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  CAS  Google Scholar 

  • Podsiadlo P, Sui L, Elkasabi Y, Burgardt P, Lee J, Miryala A, Kusumaatmaja W, Carmen MR, Shtein M, Kieffer J, Lahann J, Kotov NA (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906

    Article  CAS  Google Scholar 

  • Pranger L, Tannenbaum R (2008) Biobased nanocomposites prepared by in situ polymerisation of furfuryl alcohol with cellulose whiskers or montmorillonite clay. Macromolecules 41:8682–8687

    Article  CAS  Google Scholar 

  • Qu P, Gao Y, Wu G-F, Zhang L-P (2010) Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823

    CAS  Google Scholar 

  • Raquez J-M, Murena Y, Goffin A-L, Habibi Y, Ruelle B, DeBuyl F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549

    Article  CAS  Google Scholar 

  • Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134

    Article  CAS  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Revol J-F, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and opticallyvariable properties. J Pulp Pap Sci 24:146–149

    CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of the unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  • Rowland SP, Bertoniere NR (1985) Chemical methods of studying supramolecular structure. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Wiley, New York

    Google Scholar 

  • Ruiz MM, Cavaillé JY, Dufresne A, Gérard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interfaces 7:117–131

    Article  CAS  Google Scholar 

  • Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185

    Article  CAS  Google Scholar 

  • Saidak T (2012) CelluForce debuts world’s first NanoCrystalline Cellulose demo plant. http://www.biofuelsdigest.com/bdigest/2012/02/06/celluforce-debuts-worlds-first-nanocrystalline-cellulose-demo-plant. Accessed 28 November 2012

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Salvetat JP, Bhattacharyya S, Pipes RB (2006) Progress on mechanics of carbon nanotubes and derived materials. J Nanosci Nanotechnol 6:1857–1882

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Sarko A (1978) What is the crystalline structure of cellulose? Tappi J 61:59–61

    CAS  Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231

    Article  CAS  Google Scholar 

  • Sharmin N, Khan RA, Salmieri S, Dussault D, Bouchard J, Lacroix M (2012) Modification and characterization of biodegradable methylcellulose films with trimethylolpropane trimethacrylate (TMPTMA) by γ radiation: effect of nanocrystalline cellulose. J Agric Food Chem 60:623–629

    Article  CAS  Google Scholar 

  • Shim BS, Podsiadlo P, Lilly DG, Agarwal A, Lee J, Tang Z, Ho S, Paterson D, Lu W, Kotov NA (2007) Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett 7:3266–3273

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  CAS  Google Scholar 

  • Siqueira G, Mathew AP, Oksman K (2011a) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71:1886–1892

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, Perez DS, Dufresne A (2011b) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18:57–65

    Article  CAS  Google Scholar 

  • Sjöström E (1981) Wood chemistry. Fundamentals and applications. Academic Press, Inc., New York, p 223

    Google Scholar 

  • Spagnol C, Rodriques FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237

    Article  CAS  Google Scholar 

  • Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides, molecular and crystal structure of regenerated cellulose. Macromolecules 9:851–857

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) An electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24:4168–4175

    Article  CAS  Google Scholar 

  • Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25:4232–4234

    Article  CAS  Google Scholar 

  • Sui L, Huang L, Podsiadlo P, Kotov NA, Kieffer J (2010) Brillouin light scattering investigation of the mechanical properties of layer-by-layer assembled cellulose nanocrystal films. Macromolecules 43:9541–9548

    Article  CAS  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1985) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218

    CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated cellulose: role of hydrogen bonds. Polymer 32:1516–1530

    Article  CAS  Google Scholar 

  • Teeäär R, Serimaa R, Paakkarl T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17:231–237

    Article  Google Scholar 

  • Teixeira EM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431

    Article  CAS  Google Scholar 

  • Ten E, Bahr DF, Li B, Jiang L, Wolcott MP (2012) Effects of cellulose nanowhiskers on mechanical, dielectric, and rheological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhisker composites. Ind Eng Chem Res 51:2941–2951

    Article  CAS  Google Scholar 

  • Ureña-Benavides EE, Brown PJ, Kitchens CL (2010) Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir 26:14263–14270

    Article  CAS  Google Scholar 

  • Virozub A, Haimovich N, Brandon S (2009) Three-dimensional simulations of liquid bridges between two cylinders: forces, energies, and torques. Langmuir 25:12837–12842

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Cellulose nanofibres and cellulose nanowhiskers based natural rubber composites: Diffusion, sorption, and permeation of aromatic organic solvents. J Appl Polym Sci 124:1614–1623

    Article  CAS  Google Scholar 

  • Wada M, Okano T (2001) Localization of Ia and Iß phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188

    Article  CAS  Google Scholar 

  • Wang Y, Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carboydr Polym 83:1937–1946

    Article  CAS  Google Scholar 

  • Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12:1585–1593

    Article  CAS  Google Scholar 

  • Wang N, Ding EY, Cheng RS (2006) The surface modification of nanocrystalline cellulose. Acta Polym Sinica 8:982–987

    Google Scholar 

  • Wang X, Niu H, Wang X, Lin T (2009) Large-scale electrospinning of polymer nanofibers using needleless nozzle. Proceedings of the 38th textile research symposium, Susono City, Japan, pp 117–122.

  • Xu SH, Gu J, Luo YF, Jia DM (2012) Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites. Express Polym Lett 6:14–25

    Article  CAS  Google Scholar 

  • Yu H-Y, Qin Z-Y, Liu Y-N, Chen L, Liu N, Zhou Z (2012) Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carb Polym 89:971–978

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Compos A 33:1185–1190

    Article  Google Scholar 

  • Zhang H, Zhang J, Song S, Wu G, Pu J (2011) Modified nanocrystalline cellulose from two kinds of modifiers used for improving formaldehyde emission and bonding strength of urea-formaldehyde resin adhesive. BioResources 6:4430–4438

    CAS  Google Scholar 

  • Zhou C, Wu Q, Yue Y, Zhang Q (2011a) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123

    Article  CAS  Google Scholar 

  • Zhou C, Wu Q, Zhang Q (2011b) Dynamic rheology studies of in situ polymerization process of polyacrylamide–cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255

    Article  CAS  Google Scholar 

  • Zoppe JO, Habibi Y, Rojas OJ, Venditti RA, Johansson L-S, Efimenko K, Österberg M, Laine J (2010) Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11:2683–2691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. T. Luong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, A.C.W., Lam, E., Chong, J. et al. Reinforced plastics and aerogels by nanocrystalline cellulose. J Nanopart Res 15, 1636 (2013). https://doi.org/10.1007/s11051-013-1636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1636-z

Keywords

Navigation