Skip to main content

Advertisement

Log in

Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An original fluorophore engineered for two-photon excitation or a porphyrin derivative were entrapped in the silica shell of magnetic porous silica nanoparticles during the synthesis of the silica moiety without damaging the structure of the organic part. The mild conditions involved allowed obtaining microporous or mesoporous silica magnetic nanoparticles, respectively. Mannose was grafted on the surface of the nanoparticles to target MCF-7 breast cancer cells. The studies of magnetic properties of these hybrid nanoparticles show that they present a blocking temperature at 190 K. The nano-objects designed with the two-photon fluorophore were efficient for two-photon imaging of MCF-7 cancer cells, whereas the nano-objects with the photosensitizer efficiently killed cancer cells. The presence of the mannose moiety was demonstrated to improve both imaging and therapy properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M (2008) Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol 26(11):612–621

    Article  CAS  Google Scholar 

  • Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, Loock B, Couleaud P, Frochot C, Morere A, Maillard P, Garcia M, Durand JO (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 12:1475–1477. doi:10.1039/b900427k

    Article  Google Scholar 

  • Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Castanon SL, Beristain MF, Ortega A, Gomez-Sosa G, Munoz E, Perez-Martinez AL, Ogawa T, Halim MF, Smith F, Walser A, Dorsinville R (2011) The synthesis, characterization and third-order nonlinear optical character of poly(2,5-dipropargyloxybenzoate) containing a polar aromatic diacetylene. Dyes Pigment 88(2):129–134. doi:10.1016/j.dyepig.2010.05.012

    Article  CAS  Google Scholar 

  • Chang B, Guo J, Liu C, Qian J, Yang W (2010) Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 20(44):9941–9947

    Article  CAS  Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637

    Article  CAS  Google Scholar 

  • Chelebaeva E, Raehm L, Durand JO, Guari Y, Larionova J, Guerin C, Trifonov A, Willinger M, Thangavel K, Lascialfari A, Mongin O, Mir Y, Blanchard-Desce M (2010) Mesoporous silica nanoparticles combining two-photon excited fluorescence and magnetic properties. J Mater Chem 20(10):1877–1884. doi:10.1039/b922052f

    Article  CAS  Google Scholar 

  • Chikazumi S (1997) Physics of ferromagnetism, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Coti KK, Belowich ME, Liong M, Ambrogio MW, Lau YA, Khatib HA, Zink JI, Khashab NM, Stoddart JF (2009) Mechanised nanoparticles for drug delivery. Nanoscale 1(1):16–39

    Article  CAS  Google Scholar 

  • Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2(7):1083–1095. doi:10.1039/c0nr00096e

    Article  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  Google Scholar 

  • Djurberg C, Svedlindh P, Nordblad P, Hansen MF, Bodker F, Morup S (1997) Dynamics of an interacting particle system: evidence of critical slowing down. Phys Rev Lett 79(25):5154–5157. doi:10.1103/PhysRevLett.79.5154

    Article  CAS  Google Scholar 

  • Eaton DF (1988) Reference materials for fluorescence measurement. Pure Appl Chem 60(7):1107–1114

    Article  CAS  Google Scholar 

  • Feng J, Song SY, Deng RP, Fan WQ, Zhang HJ (2010) Novel multifunctional nanocomposites: magnetic mesoporous silica nanospheres covalently bonded with near-infrared luminescent lanthanide complexes. Langmuir 26(5):3596–3600. doi:10.1021/la903008z

    Article  CAS  Google Scholar 

  • Folch B, Larionova J, Guari Y, Molvinger K, Luna C, Sangregorio C, Innocenti C, Caneschi A, Guerin C (2010) Synthesis and studies of water-soluble prussian blue-type nanoparticles into chitosan beads. Phys Chem Chem Phys 12(39):12760–12770. doi:10.1039/c002432e

    Article  CAS  Google Scholar 

  • Gai SL, Yang PP, Li CX, Wang WX, Dai YL, Niu N, Lin J (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Adv Funct Mater 20(7):1166–1172. doi:10.1002/adfm.200902274

    Article  CAS  Google Scholar 

  • Gary-Bobo M, Mir Y, Rouxel C, Brevet D, Basile I, Maynadier M, Vaillant O, Mongin O, Blanchard-Desce M, Morere A, Garcia M, Durand J-O, Raehm L (2011) Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew Chem Int Ed 50(48):11425–11429

    Article  CAS  Google Scholar 

  • Gary-Bobo M, Hocine O, Brevet D, Maynadier M, Raehm L, Richeter S, Charasson V, Loock B, Morere A, Maillard P, Garcia M, Durand J-O (2012) Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int J Pharm 423(2):509–515

    Article  CAS  Google Scholar 

  • Girtu MA (2002) The dynamic susceptibility of a quasi-one-dimensional Mn porphyrin-based hybrid magnet: cole–cole analysis. J Opt Adv Mater 4(1):85–92

    CAS  Google Scholar 

  • He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21(16):5845–5855

    Article  CAS  Google Scholar 

  • Hocine O, Gary-Bobo M, Brevet D, Maynadier M, Fontanel S, Raehm L, Richeter S, Loock B, Couleaud P, Frochot C, Charnay C, Derrien G, Smaihi M, Sahmoune A, Morere A, Maillard P, Garcia M, Durand J-O (2010) Silicalites and mesoporous silica nanoparticles for photodynamic therapy. Int J Pharm 402(1–2):221–230

    Article  CAS  Google Scholar 

  • Huang D-M, Hung Y, Ko B-S, Hsu S-C, Chen W-H, Chien C-L, Tsai C-P, Kuo C-T, Kang J-C, Yang C-S, Mou C-Y, Chen Y-C (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. Faseb J 19(14):2014–2016

    CAS  Google Scholar 

  • Katan C, Tretiak S, Werts MHV, Bain AJ, Marsh RJ, Leonczek N, Nicolaou N, Badaeva E, Mongin O, Blanchard-Desce M (2007) Two-photon transitions in quadrupolar and branched chromophores: experiment and theory. J Phys Chem B 111(32):9468–9483

    Article  CAS  Google Scholar 

  • Kim HM, Cho BR (2009) Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues. Acc Chem Res 42(7):863–872. doi:10.1021/ar800185u

    Article  CAS  Google Scholar 

  • Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. doi:10.1002/anie.200802469

    Article  CAS  Google Scholar 

  • Lartigue L, Oumzil K, Guari Y, Larionova J, Guerin C, Montero JL, Barragan-Montero V, Sangregorio C, Caneschi A, Innocenti C, Kalaivani T, Arosio P, Lascialfari A (2009) Water-soluble rhamnose-coated Fe3O4 nanoparticles. Org Lett 11(14):2992–2995. doi:10.1021/ol900949y

    Article  CAS  Google Scholar 

  • Lartigue L, Innocenti C, Kalaivani T, Awwad A, Duque MdMS, Guari Y, Larionova J, Guerin C, Montero J-LG, Barragan-Montero V, Arosio P, Lascialfari A, Gatteschi D, Sangregorio C (2011) Water-dispersible sugar-coated iron oxide nanoparticles: an evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 133(27):10459–10472. doi:10.1021/ja111448t

    Article  CAS  Google Scholar 

  • Lartigue L, Oh S, Prouzet E, Guari Y, Larionova J (2012) Superspin-glass behavior of Co-3[Fe(CN)(6)](2) prussian blue nanoparticles confined in mesoporous silica. Mater Chem Phys 132(2–3):438–445. doi:10.1016/j.matchemphys.2011.11.050

    Article  CAS  Google Scholar 

  • Lebret V, Raehm L, Durand JO, Smaihi M, Gerardin C, Nerambourg N, Werts MHV, Blanchard-Desce M (2008a) Synthesis and characterization of fluorescently doped mesoporous nanoparticles for two-photon excitation. Chem Mater 20(6):2174–2183

    Article  CAS  Google Scholar 

  • Lebret V, Raehm L, Durand JO, Smaihi M, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2008b) Surface functionalization of two-photon dye-doped mesoporous silica nanoparticles with folic acid: cytotoxicity studies with HeLa and MCF-7 cancer cells. J Sol Gel Sci Technol 48(1–2):32–39. doi:10.1007/s10971-008-1724-1

    Article  CAS  Google Scholar 

  • Lebret V, Raehm L, Durand JO, Smaihi M, Gerardin C, Nerambourg N, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2009) Mesoporous silica nanoparticles for two-photon fluorescence. Med Sci 25(8–9):744–746

    Google Scholar 

  • Lebret V, Raehm L, Durand JO, Smaihi M, Werts MHV, Blanchard-Desce M, Methy-Gonnod D, Dubernet C (2010) Folic acid-targeted mesoporous silica nanoparticles for two-photon fluorescence. J Biomed Nanotechnol 6(2):176–180. doi:10.1166/jbn.2010.1112

    Article  CAS  Google Scholar 

  • Li X, Xie QR, Zhang J, Xia W, Gu H (2011a) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32(35):9546–9556. doi:10.1016/j.biomaterials.2011.08.068

    Article  CAS  Google Scholar 

  • Li X, Zhang JX, Gu HC (2011b) Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir 27(10):6099–6106. doi:10.1021/la104653s

    Article  CAS  Google Scholar 

  • Lin CR, Chiang RK, Wang JS, Sung TW (2006a) Magnetic properties of monodisperse iron oxide nanoparticles. J Appl Phys 99(8): 08n710. doi:10.1063/1.2172891

  • Lin Y-S, Wu S-H, Hung Y, Chou Y-H, Chang C, Lin M-L, Tsai C-P, Mou C-Y (2006b) Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous. Chem Mater 18(22):5170–5172

    Article  CAS  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896

    Article  CAS  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443. doi:10.1002/smll.201001402

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, Zink JI, Tamanoi F (2007a) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 3(2):89–95

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007b) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346. doi:10.1002/smll.200700005

    Article  CAS  Google Scholar 

  • Mongin O, Porres L, Charlot M, Katan C, Blanchard-Desce M (2007) Synthesis, fluorescence, and two-photon absorption of a series of elongated rodlike and banana-shaped quadrupolar fluorophores: a comprehensive study of structure–property relationships. Chem Eur J 13(5):1481–1498. doi:10.1002/chem.200600689

    Article  CAS  Google Scholar 

  • Néel L (1949) Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites. Ann Geophys 5:99–136

    Google Scholar 

  • Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48(18):3244–3266. doi:10.1002/anie.200805257

    Article  CAS  Google Scholar 

  • Robertson CA, Evans DH, Abraharnse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1–8. doi:10.1016/j.jphotobiol.2009.04.001

    Article  CAS  Google Scholar 

  • Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles: opportunities and challenges. Nanoscale 2(10):1870–1883

    Article  CAS  Google Scholar 

  • Slowing I, Trewyn BG, Lin VSY (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128(46):14792–14793

    Article  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20(37):7924–7937

    Article  CAS  Google Scholar 

  • Suteewong T, Sai H, Lee J, Bradbury M, Hyeon T, Gruner SM, Wiesner U (2010) Ordered mesoporous silica nanoparticles with and without embedded iron oxide nanoparticles: structure evolution during synthesis. J Mater Chem 20(36):7807–7814. doi:10.1039/c0jm01002b

    Article  CAS  Google Scholar 

  • Taylor-Pashow KML, Della JR, Huxford RC, Lin WB (2010) Hybrid nanomaterials for biomedical applications. Chem Commun 46(32):5832–5849. doi:10.1039/c002073g

    Article  CAS  Google Scholar 

  • Terenziani F, Katan C, Badaeva E, Tretiak S, Blanchard-Desce M (2008) Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments. Adv Mater 20(24):4641–4678. doi:10.1002/adma.200800402

    Article  CAS  Google Scholar 

  • Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J, Zink JI (2010) Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. J Am Chem Soc 132(31):10623–10625. doi:10.1021/ja1022267

    Article  CAS  Google Scholar 

  • Wandersman E, Dupuis V, Dubois E, Perzynski R, Nakamae S, Vincent E (2008) Growth of a dynamical correlation length in an aging superspin glass. EPL 84(3):37011. doi:10.1209/0295-5075/84/37011

    Article  Google Scholar 

  • Wang GN, Su XG (2011) The synthesis and bio-applications of magnetic and fluorescent bifunctional composite nanoparticles. Analyst 136(9):1783–1798. doi:10.1039/c1an15036g

    Article  CAS  Google Scholar 

  • Wang F, Chen X, Zhao Z, Tang S, Huang X, Lin C, Cai C, Zheng N (2011) Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. J Mater Chem 21(30):11244–11252. doi:10.1039/c1jm10329f

    Article  CAS  Google Scholar 

  • Wang M, Zhang J, Yuan Z, Yang W, Wu Q, Gu H (2012) Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles. J Biomed Nanotechnol 8(4):624–632. doi:10.1166/jbn.2012.1416

    Article  CAS  Google Scholar 

  • Wu SH, Lin YS, Hung Y, Chou YH, Hsu YH, Chang C, Mou CY (2008) Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies. ChemBioChem 9(1):53–57. doi:10.1002/cbic.200700509

    Article  CAS  Google Scholar 

  • Xu C, Webb WW (1996) Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B 13(3):481–491

    Article  CAS  Google Scholar 

  • Zhang J, Li X, Rosenholm JM, Gu H-c (2011) Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. J Coll Int Sci 361(1):16–24. doi:10.1016/j.jcis.2011.05.038

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GDR “GDR CNRS 3049 Photomed Médicaments photoactivables—Photochimiothérapie,” Association pour la Recherche sur le Cancer” no SFI20101201906 and the non-profit organization Rétinostop is gratefully acknowledged. We gratefully thank Michel Gleizes for technical assistance, Emmanuel Schaub from PIXEL platform (multiphotonic microscopy facilities, University of Rennes 1), Corine Reibel and PAC, ICGM for magnetic measurements. L. L. thanks the UFI (GF/IR/732/07, no 25) for financial support. J.O.D, J.L., M.P., Y. G., L.R. thank CNRS, Université Montpellier 2 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yannick Guari or Jean-Olivier Durand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrier, M., Gary-Bobo, M., Lartigue, L. et al. Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. J Nanopart Res 15, 1602 (2013). https://doi.org/10.1007/s11051-013-1602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1602-9

Keywords

Navigation