Skip to main content

Advertisement

Log in

A copper cluster protected with phenylethanethiol

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A copper cluster protected with 2-phenylethanethiol (PET) exhibiting distinct optical features in UV/Vis spectroscopy is reported. Matrix-assisted laser desorption ionisation mass spectrometry of the cluster shows a well-defined molecular ion peak at m/z 5,800, assigned to ~Cu38(PET)25. Fragmented ions from the cluster show the expected isotope patterns in electrospray ionisation mass spectrometry. The as-synthesized cluster was well-characterised using other tools as well. Clusters undergo decomposition in about 2 h after synthesis as a metallic few-atom core of copper is highly unstable. The products of decomposition were also characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ai Z, Zhang L, Lee S, Ho W (2009) Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C 113(49):20896. doi:10.1021/jp9083647

    Article  CAS  Google Scholar 

  • Bakshi MS, Possmayer F, Petersen NO (2007) Simultaneous synthesis of Au and Cu nanoparticles in pseudo-core-shell type arrangement facilitated by DMPG and 12-6-12 capping agents. Chem Mater 19(6):1257. doi:10.1021/cm062771t

    Article  CAS  Google Scholar 

  • Bootharaju MS, Pradeep T (2011) Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 27(13):8134. doi:10.1021/la200947c

    Article  CAS  Google Scholar 

  • Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130(27):8608. doi:10.1021/ja8005379

    Article  CAS  Google Scholar 

  • Chakraborty I, Govindarajan A, Erusappan J, Ghosh A, Pradeep T, Yoon B, Whetten RL, Landman U (2012a) The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. Nano Lett 12(11):5861–5866. doi:10.1021/nl303220x

    Article  CAS  Google Scholar 

  • Chakraborty I, Udayabhaskararao T, Pradeep T (2012b) High temperature nucleation and growth of glutathione protected ~Ag75 clusters. Chem Commun 48(54):6788

    Article  CAS  Google Scholar 

  • Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131(33):11666. doi:10.1021/ja904713f

    Article  CAS  Google Scholar 

  • Dhanalakshmi L, Udayabhaskararao T, Pradeep T (2012) Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem Commun 48(6):859. doi:10.1039/c1cc15604g

    Article  CAS  Google Scholar 

  • Espinet P, Lequerica MC, Martin-Alvarez JM (1982) Synthesis, structural characterization and mesogenic behavior of copper(I) n-alkylthiolates. Chem Eur J 5(7):1982–1986. doi:10.1002/(sici)1521-3765(19990702)5:7

    Article  Google Scholar 

  • Ghijsen J, Tjeng LH, Van EJ, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of cuprous and cupric oxides. Phys Rev B 38(16-A):11322

    Article  CAS  Google Scholar 

  • Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255(5):2730. doi:10.1016/j.apsusc.2008.08.110

    Article  CAS  Google Scholar 

  • Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pal SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83(24):9676. doi:10.1021/ac202610e

    Article  CAS  Google Scholar 

  • Guo J, Kumar S, Bolan M, Desireddy A, Bigioni TP, Griffith WP (2012) Mass spectrometric identification of silver nanoparticles: the case of Ag32(SG)19. Anal Chem 84(12):5304. doi:10.1021/ac300536j

    Article  CAS  Google Scholar 

  • Habeeb MMA, Pradeep T (2011) Au25@SiO2: quantum clusters of gold embedded in silica. Small 7(2):204

    Article  Google Scholar 

  • Haruta M (2005) Catalysis: gold rush. Nature 437(7062):1098. doi:10.1038/4371098a

    Article  CAS  Google Scholar 

  • Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 a resolution. Science 318(5849):430

    Article  CAS  Google Scholar 

  • Jia X, Li J, Han L, Ren J, Yang X, Wang E (2012) DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6(4):3311. doi:10.1021/nn3002455

    Article  CAS  Google Scholar 

  • Knoppe S, Dharmaratne AC, Schreiner E, Dass A, Burgi T (2010) Ligand exchange reactions on Au38 and Au40 clusters: a combined circular dichroism and mass spectrometry study. J Am Chem Soc 132(47):16783. doi:10.1021/ja104641x

    Article  CAS  Google Scholar 

  • Lu Y, Chen W (2012) Sub-nanometer sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev 41(9):3594. doi:10.1039/c2cs15325d

    Article  CAS  Google Scholar 

  • Mathew A, Sajanlal PR, Pradeep T (2011) A fifteen atom silver cluster confined in bovine serum albumin. J Mater Chem 21(30):11205. doi:10.1039/c1jm11452b

    Article  CAS  Google Scholar 

  • Mathew A, Sajanlal PR, Pradeep T (2012) Selective visual detection of TNT at the sub-zeptomole level. Angew Chem Int Ed 51(38):9596–9600. doi:10.1002/anie.201203810

    Article  CAS  Google Scholar 

  • Muhammed MAH, Verma PK, Pal SK, Kumar RCA, Paul S, Omkumar RV, Pradeep T (2009) Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling. Chem Eur J 15(39):10110. doi:10.1002/chem.200901425

    Article  CAS  Google Scholar 

  • Nishida N, Miyashita A, Hashimoto N, Murayama H, Tanaka H (2011) Regenerative synthesis of copper nanoparticles by photoirradiation. Eur Phys J D 63(2):307. doi:10.1140/epjd/e2011-10515-8

    Article  CAS  Google Scholar 

  • Parikh AN, Gillmor SD, Beers JD, Beardmore KM, Cutts RW, Swanson BI (1999) Characterization of chain molecular assemblies in long-chain, layered silver thiolates: a joint infrared spectroscopy and X-ray diffraction study. J Phys Chem B 103(15):2850. doi:10.1021/jp983938b

    Article  CAS  Google Scholar 

  • Pei Y, Gao Y, Zeng XC (2008) Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J Am Chem Soc 130(25):7830. doi:10.1021/ja802975b

    Article  CAS  Google Scholar 

  • Prucek R, Kvitek L, Panacek A, Vancurova L, Soukupova J, Jancik D, Zboril R (2009) Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. J Mater Chem 19(44):8463. doi:10.1039/b913561h

    Article  CAS  Google Scholar 

  • Rao TUB, Pradeep T (2010) Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed 49(23):3925. doi:10.1002/anie.200907120

    Article  CAS  Google Scholar 

  • Rao TUB, Nataraju B, Pradeep T (2010) Ag9 quantum cluster through a solid-state route. J Am Chem Soc 132(46):16304. doi:10.1021/ja105495n

    Article  CAS  Google Scholar 

  • Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, Nair S, Koyakutty M (2010) Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology 21(5):055103

    Article  Google Scholar 

  • Salorinne K, Chen X, Troff RW, Nissinen M, Haekkinen H (2012) One-pot synthesis and characterization of subnanometre-size benzotriazolate protected copper clusters. Nanoscale 4(14):4095. doi:10.1039/c2nr30444a

    Article  CAS  Google Scholar 

  • Sandhyarani N, Pradeep T (2001) An investigation of the structure and properties of layered copper thiolates. J Mater Chem 11(4):1294. doi:10.1039/b009837j

    Article  CAS  Google Scholar 

  • Saumya V, Rao TP (2012) Copper quantum cluster–polypyrrole composite film based zero current chronopotentiometric sensor for glutathione. Anal Methods 4(7):1976

    Article  CAS  Google Scholar 

  • Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T (2008) Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C 112(32):12168. doi:10.1021/jp800508d

    Article  CAS  Google Scholar 

  • Shichibu Y, Negishi Y, Tsukuda T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. J Am Chem Soc 127(39):13464. doi:10.1021/ja053915s

    Article  CAS  Google Scholar 

  • Stellwagen D, Weber A, Bovenkamp GL, Jin R, Bitter JH, Kumar CSSR (2012) Ligand control in thiol stabilized Au38 clusters. RSC Adv 2(6):2276. doi:10.1039/c2ra00747a

    Article  CAS  Google Scholar 

  • Udayabhaskararao T, Sun Y, Goswami N, Pal SK, Balasubramanian K, Pradeep T (2012) Ag7Au6: a 13-atom alloy quantum cluster. Angew Chem Int Ed 51(9):2155–2159. doi:10.1002/anie.201107696

    Article  CAS  Google Scholar 

  • Vilar-Vidal N, Blanco MC, LoÌpez-Quintela MA, Rivas J, Serra C (2010) Electrochemical synthesis of very stable photoluminescent copper clusters. J Phys Chem C 114(38):15924. doi:10.1021/jp911380s

    Article  CAS  Google Scholar 

  • Wei Y, Chen S, Kowalczyk B, Huda S, Gray TP, Grzybowski BA (2010) Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J Phys Chem C 114(37):15612. doi:10.1021/jp1055683

    Article  CAS  Google Scholar 

  • Wei W, Lu Y, Chen W, Chen S (2011) One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J Am Chem Soc 133(7):2060. doi:10.1021/ja109303z

    Article  CAS  Google Scholar 

  • Xavier PL, Chaudhari K, Baksi A, Pradeep T (2012) Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience. Nano Rev 3:14767. doi:10.3402/nano.v3i0.14767

    CAS  Google Scholar 

  • Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T (2012) Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal 2(7):1519. doi:10.1021/cs300252g

    Article  CAS  Google Scholar 

  • Yuan X, Luo Z, Zhang Q, Zhang X, Zheng Y, Lee JY, Xie J (2011) Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 5(11):8800–8808. doi:10.1021/nn202860s

    Article  CAS  Google Scholar 

  • Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130(4):1138. doi:10.1021/ja0782448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Science and Technology, Government of India for financial support. Thanks are due to SAIF, IIT Madras for the PXRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thalappil Pradeep.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3567 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganguly, A., Chakraborty, I., Udayabhaskararao, T. et al. A copper cluster protected with phenylethanethiol. J Nanopart Res 15, 1522 (2013). https://doi.org/10.1007/s11051-013-1522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1522-8

Keywords

Navigation