Skip to main content
Log in

Facile fabrication of mesoporous ZnO nanospheres for the controlled delivery of captopril

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the present study, to formulate captopril in a hierarchical porous structure of ZnO nanospheres by means of the soluble-starch-insertion method, state of drug carrier delivery toward oral route and the mode of delivery in suitable medium. Mesoporous ZnO nanospheres were synthesized by simple soluble-starch-insertion method, followed by loading of captopril using ultrasonic force. The materials were characterized by PXRD, SEM, FESEM, TEM, TGA, FT-IR, and BET analyses, and biocompatibility studies. Captopril-loaded porous ZnO nanospheres were evaluated as in vitro drug-release studies and its kinetic models. Crystallite plane arrangement, functional groups, materials morphology, and porosity of porous ZnO nanospheres were confirmed. Larger surface area and distribution in constrained pores on its surface make the nanospheres suitable for high drug loading of captopril. The ZnO nanocrystallites have given porous properties on the spherical surface leads to the drug adsorption. The loading and release studies (in vitro in simulated gastric and intestinal fluids) have shown that both were affected by the mesoporous nanospheres’ surface properties of the ZnO materials and its biocompatibility has also been proved. Therefore, the in vitro experiments have indicated the considerable promise of mesoporous ZnO nanospheres, fabricated by the soluble-starch-insertion method acting as a biocompatible carrier for the controlled delivery of captopril in oral route of administration.

Graphical Abstract

Schematic representation of the protocol for the preparation of captopril-loaded mesoporous ZnO nanospheres

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aamodt RL, Rumble WF, Johnston GS, Foster D, Henkin RI (1979) Zinc metabolism in humans after oral and intravenous administration of Zn-69 m. Am J Clin Nutr 32:559–569

    CAS  Google Scholar 

  • Barick KC, Nigam S, Bahadur D (2010) Nanoscale assembly of mesoporous ZnO: a potential drug carrier. J Mater Chem 20:6446–6452

    Article  CAS  Google Scholar 

  • Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001

    Article  Google Scholar 

  • Bjork E, Isaksson U, Edman P, Artursson P (1995) Starch microspheres induce pulsatile delivery of drugs and peptides across the epithelial barrier by reversible separation of the tight junctions. J Drug Target 2:501–507

    Article  CAS  Google Scholar 

  • Breheny D, Zhang H, Massey ED (2005) Application of a two-stage Syrian hamster embryo cell transformation assay to cigarette smoke particulate matter. Mutat Res 572:45–57

    Article  CAS  Google Scholar 

  • Devi KP, Rao KV, Baveja S, Fathi M, Roth M (1989) Zero-order release formulation of oxprenolol hydrochloride with swelling and erosion control. Pharm Res 6:313–317

    Article  CAS  Google Scholar 

  • Du X, He J (2011) Facile fabrication of hollow mesoporous silica nanospheres for superhydrophilic and visible/near-IR antireflection coatings. Chem A-Eur J 17:8165–8174

    Article  CAS  Google Scholar 

  • Fan Z, Lu JG (2005) Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 5:1561–1573

    Article  CAS  Google Scholar 

  • Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM (2001) A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22:883–889

    Article  CAS  Google Scholar 

  • Gurny R, Doelker E, Peppas NA (1982) Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials 3:27–32

    Article  CAS  Google Scholar 

  • Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420

    Article  CAS  Google Scholar 

  • Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  Google Scholar 

  • Hillaert S, Van den Bossche W (1999) Determination of captopril and its degradation products by capillary electrophoresis. J Pharm Biomed Anal 21:65–73

    Article  CAS  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats T (2005) GACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult. Circulation 112:154–235

    Article  Google Scholar 

  • Jiang X, Brinker CJ (2006) Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules. J Am Chem Soc 128:4512–4513

    Article  CAS  Google Scholar 

  • Jiang H, Wang T, Wang L, Sun C, Jiang T, Cheng G, Wang S (2012) Development of an amorphous mesoporous TiO2 nanosphere as a novel carrier for poorly water-soluble drugs: effect of different crystal forms of TiO2 carriers on drug loading and release behaviors. Microporous Mesoporous Mater 153:124–130

    Article  CAS  Google Scholar 

  • Jonathan M, Xiaohui Peng P, Christopher K, Yan X, Barbara K, Stanislaus SW (2011) Viable methodologies for the synthesis of high-quality nanostructures. Green Chem 13:482–519

    Article  Google Scholar 

  • Kimmel DW, Le Blanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    Article  CAS  Google Scholar 

  • Kirkendall EO, Smigelskas AD (1947) Diffusion of zinc in alpha brass. Trans AIME 171:130–142

    Google Scholar 

  • Labhasetwar V, Leslie-Pelecky DL (2007) Biomedical applications of nanotechnology. Wiley, Hoboken

    Book  Google Scholar 

  • Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JW (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505

    Article  CAS  Google Scholar 

  • Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  • Malafaya PB, Elvira C, Gallardo A, San Roman J, Reis RL (2001) Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polymer 12:1227–1241

    Article  CAS  Google Scholar 

  • Matsumoto A, Tsutsumi K, Schumacher K, Unger KK (2002) Surface functionalization and stabilization of mesoporous silica spheres by silanization and their adsorption characteristics. Langmuir 18:4014–4019

    Article  CAS  Google Scholar 

  • Mitra S, Subia B, Patra P, Chandra S, Debnath N, Das S, Banerjee R, Kundu SC, Pramanik P, Goswami A (2012) Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J Mater Chem 22:24145–24154

    Article  CAS  Google Scholar 

  • Munoz B, Ramila A, Perez-Pariente J, Diaz I, Vallet-Regi M (2003) MCM-41 organic modification as drug delivery rate regulator. Chem Mater 15:500–503

    Article  CAS  Google Scholar 

  • Natesh R, Schwager SL, Sturrock ED, Acharya KR (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421:551–554

    Article  CAS  Google Scholar 

  • Natesh R, Schwager SL, Evans HR, Sturrock ED, Acharya KR (2004) Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry 43:8718–8724

    Article  CAS  Google Scholar 

  • Oates JA, Brown MJ (2001) Antihypertensive agents and the drug therapy of hypertension. In: Hardman JG, Limbird LE, Gilman AG (eds) Goodman & Gilman’s The pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 871–900

    Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978

    Article  CAS  Google Scholar 

  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  CAS  Google Scholar 

  • Qin Y, Wang X, Wang ZL (2008) Microfibre–nanowire hybrid structure for energy scavenging. Nature 451:809–813

    Article  CAS  Google Scholar 

  • Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715

    Article  CAS  Google Scholar 

  • Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Del 7:1063–1077

    Article  CAS  Google Scholar 

  • Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36

    Article  CAS  Google Scholar 

  • Rittidech A, Khotsongkram P (2006) Effect of ball milling times on phase formation of Mg0.7Zn0.3Fe2O4. Am J Appl Sci 3:1760–1762

    Article  CAS  Google Scholar 

  • Roth AP, Williams DF (1981) Properties of zinc oxide films prepared by the oxidation of diethyl zinc. J Appl Phys 52:6685–6692

    Article  CAS  Google Scholar 

  • Sing K, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  Google Scholar 

  • Titirici MM, Antonietti M, Thomas A (2006) A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem Mater 18:3808–3812

    Article  CAS  Google Scholar 

  • Ulanski P, Rosiak JM, Nalwa HS (2004) Encyclopedia of Nanoscience and nanotechnology. In: Nalwa HS (ed) Polymeric nano/microgels, 8th edn. American Scientific Publishers, California, pp 845–871

    Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  Google Scholar 

  • Wagner JG (1969) Interpretation of percent dissolved-time plots derived from in vitro testing of conventional tablets and capsules. J Pharm Sci 58:1253–1257

    Article  CAS  Google Scholar 

  • Wang Y, Ng YW, Chen Y, Shuter B, Yi J, Ding J (2008) Formulation of superparamagnetic iron oxides by nanoparticles of biodegradable polymers for magnetic resonance imaging. Adv Funct Mater 18:308–318

    Article  CAS  Google Scholar 

  • Webb JB, Williams DF, Buchanan M (1981) Transparent and highly conductive films of ZnO prepared by reactive magnetron sputtering. Appl Phys Lett 39:640–642

    Article  CAS  Google Scholar 

  • Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42:4902–4907

    Article  CAS  Google Scholar 

  • Yu J, Liu S, Yu H (2007) Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation. J Catal 249:59–66

    Article  CAS  Google Scholar 

  • Yuan JH, Chen Y, Zha HX, Song LJ, Li CY, Li JQ (2010) Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles. Colloids Surf B Biointerfaces 76:145–150

    Article  CAS  Google Scholar 

  • Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2:1661–1670

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

Download references

Acknowledgments

HBB is thankful to DST for partial funding (SR/S1/PC-45/2011) and to CSIR, New Delhi for Granting Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boreddy S. R. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakrudeen, H.B., Tsibouklis, J. & Reddy, B.S.R. Facile fabrication of mesoporous ZnO nanospheres for the controlled delivery of captopril. J Nanopart Res 15, 1505 (2013). https://doi.org/10.1007/s11051-013-1505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1505-9

Keywords

Navigation