Skip to main content
Log in

One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A one-step strategy for the facile synthesis of polyethyleneimine-functionalized Fe3O4 (Fe3O4-PEI) composite is presented in this study. We also investigated the effects of reaction time and NaAc on the composite sizes. The composite with good dispersion, wonderful crystallization, and excellent magnetism was obtained through one-pot solvothermal reaction. In the sequential presence of PEI and colloidal gold (Au) solution, plentiful Au nanoparticles with a diameter of 5 nm were assembled on the surface of Fe3O4–PEI to get Fe3O4–PEI–Au1–PEI–Au2 (Fe3O4/Au) composite. In-depth characterization of the composite formation process was performed using transmission electron microscopy, scanning electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and UV–Visible spectroscopy. The Fe3O4/Au composite was obtained with an average diameter of 150 nm, and the absorption peak was red-shifted to 580 nm. The synthesized Fe3O4/Au composite, the saturation magnetization of which was 40.4 emu/g, presented good magnetic property. Moreover, the composite could easily combine with up to 890 μg antibodies per mg, and the antibodies still kept good immunocompetence after immobilization. These advantages suggest its great potential for applications in vitro, such as separation and immunoassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Babic M, Horák D, Trchová M, Jendelová P, Glogarová K, Lesný P, Herynek V, Hájek M, Syková E (2008) Poly (l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 19(3):740–750

    Article  CAS  Google Scholar 

  • Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, Liu J, Wei Y, Li Y (2007) Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano 1(4):293–298

    Article  CAS  Google Scholar 

  • Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater 12(2):306–313

    Article  CAS  Google Scholar 

  • Cui Y, Wang Y, Hui W, Zhang Z, Xin X, Chen C (2005) The synthesis of GoldMag nano-particles and their application for antibody immobilization. Biomed Microdevices 7(2):153–156

    Article  CAS  Google Scholar 

  • Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117(18):2842–2845

    Article  Google Scholar 

  • Dobson J (2006a) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13(4):283–287

    Article  CAS  Google Scholar 

  • Dobson J (2006b) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  • Goon IY, Lai LMH, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21(4):673–681

    Article  CAS  Google Scholar 

  • Horák D, Babic M, Jendelová P, Herynek V, Trchová M, Pientka Z, Pollert E, Hájek M, Syková E (2007) d-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem 18(3):635–644

    Article  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A 67(3–4):1003–1006. doi:10.1016/j.saa.2006.09.028

    CAS  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8(9):649

    Article  CAS  Google Scholar 

  • Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19(1):33–60

    Article  CAS  Google Scholar 

  • Keelan JA (2011) Nanotoxicology: nanoparticles versus the placenta. Nat Nanotechnol 6(5):263–264

    Article  CAS  Google Scholar 

  • Kumar K, Nightingale AM, Krishnadasan SH, Kamaly N, Wylenzinska-Arridge M, Zeissler K, Branford WR, Ware E (2012) Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor. J Mater Chem 22(11):4704–4708

    Article  CAS  Google Scholar 

  • Leung KCF, Xuan S, Zhu X, Wang D, Chak CP, Lee SF, Ho WKW, Chung BCT (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41(5):1911–1928

    Article  CAS  Google Scholar 

  • Lu X, Mao H, Zhang W (2009) Fabrication of core-shell Fe3O4/polypyrrole and hollow polypyrrole microspheres. Polym Compos 30(6):847–854. doi:10.1002/pc.20666

    Article  CAS  Google Scholar 

  • Lyon JL, Fleming DA, Stone MB, Schiffer P, Williams ME (2004) Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 4(4):719–723

    Article  CAS  Google Scholar 

  • Ma LL, Feldman MD, Tam JM, Paranjape AS, Cheruku KK, Larson TA, Tam JO, Ingram DR, Paramita V, Villard JW, Jenkins JT, Wang T, Clarke GD, Asmis R, Sokolov K, Chandrasekar B, Milner TE, Johnston KP (2009) Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 3(9):2686–2696. doi:10.1021/nn900440e

    Article  CAS  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Hafeli UO (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113(19):8124–8131. doi:10.1021/jp900798r

    Article  CAS  Google Scholar 

  • Peng J, Zou F, Liu L, Tang L, Yu L, Chen W, Liu H, Tang J, Wu L (2008) Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Trans Nonferrous Met Soc China 18(2):393–398

    Article  Google Scholar 

  • Peng H-P, Liang R-P, Qiu J-D (2011) Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry. Biosens Bioelectron 26(6):3005–3011. doi:10.1016/j.bios.2010.12.003

    Article  CAS  Google Scholar 

  • Sieben S, Bergemann C, Lübbe A, Brockmann B, Rescheleit D (2001) Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225(1–2):175–179. doi:10.1016/s0304-8853(00)01248-8

    Article  CAS  Google Scholar 

  • Sun DH, Sun DX, Han MX (2011) Synthesis of monodisperse Fe3O4 microspheres and effect of the precursor concentration. Adv Mater Res 183:2327–2330

    Article  Google Scholar 

  • Sun X, Liu F, Sun L, Wang Q, Ding Y (2012) Well-dispersed Fe3O4/SiO2 nanoparticles synthesized by a mechanical stirring and ultrasonication assisted Stöber method. J Inorg Organomet Polym Mater 22(2):311–315. doi:10.1007/s10904-011-9609-0

    Article  CAS  Google Scholar 

  • Tamer U, Gündoğdu Y, Boyacı İH, Pekmez K (2010) Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12(4):1187–1196

    Article  CAS  Google Scholar 

  • Wang DZ, An LN, Zhang XB, Li XY, Shi J (2012) Synthesis of magnetic Fe3O4@TiO2 nanocomposite and its photocatalytic property. Adv Mater Res 535:117–120

    Article  Google Scholar 

  • Xie HY, Zhen R, Wang B, Feng YJ, Chen P, Hao J (2010) Fe3O4/Au core/shell nanoparticles modified with Ni2+/− nitrilotriacetic acid specific to histidine-tagged proteins. J Phys Chem C 114(11):4825–4830

    Article  CAS  Google Scholar 

  • Xu X, Cortie MB (2007) Precious metal core-shell spindles. J Phys Chem C 111(49):18135–18142. doi:10.1021/jp076425q

    Article  CAS  Google Scholar 

  • Xu C, Sun S (2009) Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Trans 29:5583–5591

    Article  Google Scholar 

  • Xu Z, Hou Y, Sun S (2007) Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699

    Article  CAS  Google Scholar 

  • Xu C, Wang B, Sun S (2009) Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. J Am Chem Soc 131(12):4216–4217

    Article  CAS  Google Scholar 

  • Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24(23):13748–13752

    Article  CAS  Google Scholar 

  • Zhao D-L, Teng P, Xu Y, Xia Q-S, Tang J-T (2010) Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core-shell structure. J Alloy Compd 502(2):392–395. doi:10.1016/j.jallcom.2010.04.177

    Article  CAS  Google Scholar 

  • Zhou X, Xu W, Wang Y, Kuang Q, Shi Y, Zhong L, Zhang Q (2010) Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method. J Phys Chem C 114(46):19607–19613. doi:10.1021/jp106949v

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 81072308, No. 30840067), Shanghai Biomedicine Key Program (No. 10391901700, No. 08391911100), Shanghai Basic Research Key Program (No. 09JC1411500), and Shanghai Yangtze River Delta Science Joint Efforts Program (12495810600, 11495810500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlin Wei.

Additional information

Feng Xu contributed equally with Yuanfeng Wang and is the co-first author for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, F., Zhang, L. et al. One-pot solvothermal synthesis of Fe3O4–PEI composite and its further modification with Au nanoparticles. J Nanopart Res 15, 1338 (2013). https://doi.org/10.1007/s11051-012-1338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1338-y

Keywords

Navigation