Skip to main content
Log in

Controllable synthesis and characterization of highly fluorescent silver nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly fluorescent silver nanoparticles (AgFNPs) have been prepared by microemulsion method and the sizes of AgFNPs were controlled by altering the molar ratio (ω) of water-to-surfactant in the water-in-oil microemulsion. The results were shown that the AgFNPs sizes increased with incremental molar ratio (ω) of water-to-surfactant. The AgFNPs have been characterized by transmission electron microscopy, dynamic light scattering, fluorescence and absorption spectroscopy, and fluorescence lifetime study. Study of the spectral characteristics was shown that the absorbance of AgFNPs increased significantly with the ω, and linear relationship between absorbance and the size of AgFNPs was observed. The increase of AgFNPs size caused a red shift of maximum absorption wavelength in the UV–Vis spectra, and the relationship between maximum absorption wavelength and AgFNPs size appeared linear dependence. The maximum fluorescence emission wavelength did not shift with the change of particles size, but the emission intensity increases with the ω. The results were shown that the other factors to affect the fluorescence properties of AgFNPs were the surface properties and microstructure, except the AgFNPs size. These surface properties depend upon the stabilizing agent, reactant concentration, and solvents and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aubin M-E, Morales DG, Hamad-Schifferli K (2005) Labeling ribonuclease S with a 3 nm Au nanoparticle by two-step assembly. Nano Lett 5:519–522

    Article  CAS  Google Scholar 

  • Banerjee S, Pabbathi A, Sekhar MC, Samanta A (2011) Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer. J Phys Chem A 115(33):9217–9225. doi:10.1021/jp206232b

    Article  CAS  Google Scholar 

  • Eklund SE, Cliffel DE (2004) Synthesis and catalytic properties of soluble platinum nanoparticles protected by a thiol monolayer. Langmuir 20:6012–6018

    Article  CAS  Google Scholar 

  • Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloid Surf B 75(1):175–178. doi:10.1016/j.colsurfb.2009.08.028

    Article  CAS  Google Scholar 

  • Fedrigo S, Harbich W, Buttet J (1993) Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. J Chem Phys 99(8):5712. doi:10.1063/1.465920

    Article  CAS  Google Scholar 

  • Gao X, Nie S (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity rapid readout using flow cytometry. Anal Chem 76:2406–2410

    Article  CAS  Google Scholar 

  • Grancharov SG, Zeng H, Sun S, Wang SX, O’Brien S, Murray CB, Kirtley JR, Held GA (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 109:13030–13035

    Article  CAS  Google Scholar 

  • Huang L, Zhai M, Peng J, Xu L, Li J, Wei G (2007) Synthesis, size control and fluorescence studies of gold nanoparticles. J Colloid Interface Sci 316:398–404. doi:10.1016/j.jcis.2007.07.039

    Article  CAS  Google Scholar 

  • Jian Z, Xiang Z, Yongchang W (2005) Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron Eng 77(1):58–62. doi:10.1016/j.mee.2004.08.005

    Article  CAS  Google Scholar 

  • Le Guével X, Hötzer B, Jung G, Hollemeyer K, Trouillet V, Schneider M (2011) Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J Phys Chem C 115:10955–10963. doi:10.1021/jp111820b

    Article  Google Scholar 

  • Ledo-Suárez A, Rivas J, Rodríguez-Abreu CF, Rodríguez MJ, Pastor E, Hernández-Creus A, Oseroff SB, López-Quintela MA (2007) Facile synthesis of stable subnanosized silver clusters in microemulsions. Angew Chem Int Ed 46(46):8823–8827. doi:10.1002/anie.200702427

    Article  Google Scholar 

  • Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467

    Article  CAS  Google Scholar 

  • Maretti L, Billone PS, Liu Y, Scaiano JC (2009) Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J Am Chem Soc 131:13972–13980

    Article  CAS  Google Scholar 

  • McFarland AD, Duyne RPV (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496. doi:10.1002/jrs.1362

    Article  CAS  Google Scholar 

  • Petit C, Lixonf Pa, Pileni M-P (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983

    Article  CAS  Google Scholar 

  • Peyser LA (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291(5501):103–106. doi:10.1126/science.291.5501.103

    Article  CAS  Google Scholar 

  • Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Duyne RPV (2003) A nanoscale optical biosensor real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B 107:1772–1780

    Article  CAS  Google Scholar 

  • Rothrock AR, Donkers RL, Schoenfisch MH (2005) Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc 127:9362–9363

    Article  CAS  Google Scholar 

  • Sánchez-González An, Corni S, Mennucci B (2011) Surface-enhanced fluorescence within a metal nanoparticle array: the role of solvent and plasmon couplings. J Phys Chem C 115(13):5450–5460. doi:10.1021/jp111196f

    Article  Google Scholar 

  • Sengupta B, Ritchie CM, Buckman JG, Johnsen KR, Goodwin PM, Petty JT (2008) Base-directed formation of fluorescent silver clusters. J Phys Chem C 112:18776–18782

    CAS  Google Scholar 

  • Solanki JN, Murthy ZVP (2011) Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res 50(22):12311–12323. doi:10.1021/ie201649x

    Article  CAS  Google Scholar 

  • Vernon KC, Funston AM, Novo C, Gómez DE, Mulvaney P, Davis TJ (2010) Influence of particle–substrate interaction on localized plasmon resonances. Nano Lett 10(6):2080–2086. doi:10.1021/nl100423z

    Article  CAS  Google Scholar 

  • Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573. doi:10.1021/nl101225f

    Article  CAS  Google Scholar 

  • Xu H, Suslick KS (2010a) Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 4:3209–3214

    Article  CAS  Google Scholar 

  • Xu H, Suslick KS (2010b) Water-soluble fluorescent silver nanoclusters. Adv Mater 22(10):1078–1082. doi:10.1002/adma.200904199

    Article  CAS  Google Scholar 

  • Zhang D, Liu X, Wang X, Yang X, Lu L (2011) Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion. Phys B 406(8):1389–1394. doi:10.1016/j.physb.2011.01.035

    Article  CAS  Google Scholar 

  • Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  Google Scholar 

  • Zheng J, Ding Y, Tian B, Wang ZL, Zhuang X (2008) Luminescent and Raman active silver nanoparticles with polycrystalline structure. J Am Chem Soc 130:10472–10473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National High-Tech Research and Development Plan of China (“863” plan, No. 2011AA06A107), the National Nature Science Foundation of China (21273073 and 21073063), and the Fundamental Research Funds for the Central Universities, China (No. WK0913002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Qing An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.L., An, X.Q. & Zhu, Y.Y. Controllable synthesis and characterization of highly fluorescent silver nanoparticles. J Nanopart Res 14, 1325 (2012). https://doi.org/10.1007/s11051-012-1325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1325-3

Keywords

Navigation