Skip to main content
Log in

Synthesis of core–shell iron nanoparticles from decomposition of Fe–Sn nanocomposite and studies on their microwave absorption properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Core–shell iron nanoparticles have been synthesized by pyrolysis of nanocomposite of oxides of iron–tin (Fe–Sn). The core–shell nanoparticles of phase pure iron in carbonaceous shell are formed only at very low concentration of tin (0.0011 mol) in the nanocomposite sample. From different studies viz. X-ray diffraction, high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy, it has been established that core–shell nanostructures have been formed with Fe as core and amorphous carbon as the shell. The heating of nanocomposite at different temperatures up to 900 °C revealed very interesting dynamics of formation of core–shell structure wherein above 650 °C the iron carbide phase decomposes and carbon atoms move out to form an amorphous shell around iron nanoparticles. This process of formation of core–shell structures is quite different from conventional way wherein synthesis of core material precedes formation of shell in two different steps. The microwave absorption properties of core–shell nanoparticles have been studied by making their composites in nitrile butadiene rubber. Reflection loss simulation studies show high values in the X and Ku bands of microwave region. The frequency of maximum return loss can be tuned through variation of composition and thickness of composite layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arruebo M, Galan M, Navascues N, Tellez C, Marquina C, Ibarra MR, Santamaria J (2006) Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 18(7):1911–1919

    Article  CAS  Google Scholar 

  • Cook PS, Cashion JD (1988) Interactions of iron and tin-based promoters during brown coal liquefaction. Fuel 67:1428–1435

    Article  CAS  Google Scholar 

  • Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107

    Article  CAS  Google Scholar 

  • Han Z, Li D, Wang H, Liu XG, Li J, Geng DY, Zhang ZD (2009) Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl Phys Lett 95:023114

    Article  Google Scholar 

  • Hayashi T, Hirono S, Tomita M, Umemura S (1996) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381:772–774

    Article  Google Scholar 

  • Hernadi K, Fonseca A, Nagy JB, Fudala A, Bernaerts D, Kiricsi I (2002) Catalytic production of carbon nanofibers over iron carbide doped with Sn+2. Appl Catal A 228:103–113

    Article  CAS  Google Scholar 

  • Hou H, Schaper AK, Weller F, Greiner A (2002) Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem Mater 14(9):3990–3994

    Article  CAS  Google Scholar 

  • Kluson P, Cerveny L (1997) Ru–Sn catalyst—A new promising system for selective hydrogenation of a carbonyl group. Chem Listy 91:100–104

    CAS  Google Scholar 

  • Lastella S, Jung YJ, Yang H, Vajtai R, Ajayan PM, Ryu CY, Rider DA, Manners I (2004) Density control of single-walled carbon nanotubes using patterned iron nanoparticles catalysts derived from phase-separated thin films of a polyferrocene block copolymer. J Mater Chem 14:1791–1794

    Article  CAS  Google Scholar 

  • Li R, Sun X, Zhou X, Cai M, Sun X (2007) Aligned heterostructures of single-crystalline tin nanowires encapsulated in amorphous carbon nanotubes. J Phys Chem C 111:9130–9135

    Article  CAS  Google Scholar 

  • Lian LX, Deng LJ, Han M, Tang W, Feng SD (2007) Microwave electromagnetic and absorption properties of Nd2Fe14B/α-Fe nanocomposites in the 0.5–18 and 26.5–40 GHz ranges. J Appl Phys 101:09M5201-09M5203

    Google Scholar 

  • Liu JR, Itoh M, Machida K (2003) Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range. Appl Phys Lett 83:4017

    Article  CAS  Google Scholar 

  • Liu JR, Itoh M, Horikawa T, Itakura M, Kuwano N, Machida K (2004) Complex permittivity, permeability and electromagnetic wave absorption of α-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. J Phys D 37:2737–2741

    Article  CAS  Google Scholar 

  • Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374

    Article  CAS  Google Scholar 

  • Lu B, Dong XL, Huang H, Zhang XF, Zhu XG, Lei JP, Sun JP (2008) Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J Magn Magn Mater 320:1106–1111

    Article  CAS  Google Scholar 

  • Michielssen E, Sajer J, Ranjithan S, Mittra R (1993) Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans Microwave Theory Tech 41(6):1024–1031

    Article  CAS  Google Scholar 

  • Ni X, Zheng Z, Xiao X, Huang L, He L (2010) Silica-coated iron nanoparticles: shape-controlled synthesis, magnetism and microwave absorption properties. Mater Chem Phys 120:206–212

    Article  CAS  Google Scholar 

  • Pol VG, Motiei M, Gedanken A, Calderon-Moreno J, Mastai Y (2003) Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules. Chem Mater 15:1378–1384

    Article  CAS  Google Scholar 

  • Ponder SM et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13(2):479–486

    Article  CAS  Google Scholar 

  • Ravindran R, Gangopadhyay K, Gangopadhyay S, Mehta N, Biswas N (2006) Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles. Appl Phys Lett 89:263511–263513

    Article  Google Scholar 

  • Ross CA (2001) Patterned magnetic recording media. Annu Rev Mater Res 31:203–235

    Article  CAS  Google Scholar 

  • Saito Y (1995) Nanoparticles and filled nanocapsules. Carbon 33(7):979–988

    Article  CAS  Google Scholar 

  • Sano N, Akazawa H, Kikuchi T, Kanki T (2003) Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41(11):2159–2162

    Article  CAS  Google Scholar 

  • Srinivasan R, Davis BH (1992) The structure of platinum–tin reforming catalysts. Platin Met Rev 36(3):151–163

    CAS  Google Scholar 

  • Sun XC, Nava N (2002) Microstructure and magnetic properties of Fe(C) and Fe(O) nanoparticles. Nano Lett 2:765–769

    Article  CAS  Google Scholar 

  • Vadera SR, Mathur R, Parihar M, Kumar N (1997) Direct synthesis of nanocomposite of γ-Fe2O3 in the copolymer matrix of aniline–formaldehyde in presence of zinc ions. Nanostruct Mater 8:889–898

    Article  CAS  Google Scholar 

  • Wang ZH, Choi CJ, Kim BK, Kim JC, Zhang ZD (2003) Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon 41(9):1751–1758

    Article  CAS  Google Scholar 

  • Yuliang AN, Xia Y, Shinan C, Chang L (2006) Preparation of carbon nanocapsules coating metal based on cellulose. Nanoscience 11:179–182

    Google Scholar 

  • Zhang XF, Dong XL, Huang H, Lv B, Lei JP, Choi CJ (2007) Microstructure and microwave absorption properties of carbon coated iron nanocapsules. J Phys D 40:5383–5387

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. O. N. Srivastava, Banaras Hindu University, Varanasi for carrying out HRTEM studies of our samples and Amit Sadh, Defence Laboratory, Jodhpur for carrying out Raman studies for our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V., Patra, M.K., Shukla, A. et al. Synthesis of core–shell iron nanoparticles from decomposition of Fe–Sn nanocomposite and studies on their microwave absorption properties. J Nanopart Res 14, 1271 (2012). https://doi.org/10.1007/s11051-012-1271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1271-0

Keywords

Navigation