Skip to main content
Log in

Growth of ultrasmall nanoparticles based on thermodynamic size focusing

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study presents a new concept to synthesize quantum dots or nanoparticles with smaller size (<2 nm) based on the thermodynamic size focusing. Conventionally, control over crystal size is achieved by interrupting crystal growth and/or limiting the reaction rate at lower temperature. Alternatively, we synthesized ultrasmall nanoparticles via a simple thermal quenching-isothermal annealing process called the thermal size focusing. This approach, avoiding the difficulty of controlling the rapid nanoparticles' growth in the interruption method or long synthesis time in the low-temperature process, provides an efficient way for obtaining ultrasmall nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Capek RK, Lambert K, Dorfs D, Smet PF, Poelman D, Eychmuller A, Hens Z (2009) Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a pre-focused hot-injection approach. Chem Mater 21(8):1743–1749

    Article  CAS  Google Scholar 

  • Chen HS, Kumar RV (2009a) Discontinuous growth of colloidal CdSe nanocrystals in the magic structure. J Phys Chem C 113(1):31–36

    Article  CAS  Google Scholar 

  • Chen HS, Kumar RV (2009b) Direct synthesis of quantum dots with controllable multimodal size distribution. J Phys Chem C 113(128):12236–12242

    Article  CAS  Google Scholar 

  • Chen HS, Kumar RV (2009c) From nearly monodispersed toward truly monosized nanocrystals: chemical potential well during growth of nanocrystals. Cryst Growth Des 9(10):4235–4238

    Article  CAS  Google Scholar 

  • Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJ (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J Phys Chem B 108(44):17119–17123

    Article  CAS  Google Scholar 

  • Chen HS, Hong HY, Kumar RV (2011) White light emission from semiconductor nanocrystals by in situ colour tuning in an alternating thermodynamic–kinetic fashion. J Mater Chem 21(16):5928–5932

    Article  CAS  Google Scholar 

  • Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100(2):468–471

    Article  CAS  Google Scholar 

  • Jun S, Jang E (2005) Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chem Commun 36:4616–4618

    Article  Google Scholar 

  • Kim SW, Zimmer JP, Ohnishi S, Tracy JB, Frangioni JV, Bawendi MG (2005) Engineering InAsxP1−x/InP/ZnSe III–V alloyed core/shell quantum dots for the near-infrared. J Am Chem Soc 127(30):10526–10532

    Article  CAS  Google Scholar 

  • Kim KE, Kim TG, Sung YM (2012) Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J Nanopart Res 14:1179

    Article  Google Scholar 

  • Kucur E, Ziegler J, Nann T (2008) Synthesis and spectroscopic characterisation of fluorescent blue-emitting ultra-stable CdSe-clusters. Small 4(7):883–887

    Article  CAS  Google Scholar 

  • Kudera S, Zanella M, Giannini C, Rizzo A, Li Y, Gigli G, Cingolani R, Ciccarella G, Spahl W, Parak WJ, Manna L (2007) Sequential growth of magic-size CdSe nanocrystals. Adv Mater 19(4):548–552

    Article  CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  CAS  Google Scholar 

  • Nguyen KA, Day PN, Pachter R (2010) Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: insight from computational prediction. J Phys Chem C 114(39):16197–16209

    Article  CAS  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  CAS  Google Scholar 

  • Peng X, Wickham J, Alivisatos AP (1998) Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J Am Chem Soc 120(21):5343–5344

    Article  CAS  Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404(6773):59–61

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  Google Scholar 

  • Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1(6):333–337

    Article  CAS  Google Scholar 

  • Riehle FS, Bienert R, Thomann R, Urban GA, Kruger M (2009) Blue luminescence and superstructures from magic size clusters of CdSe. Nano Lett 9(2):514–518

    Article  CAS  Google Scholar 

  • Soloviev VN, Eichhofer A, Fenske D, Banin U (2000) Molecular limit of a bulk semiconductor: size dependence of the “band gap” in CdSe cluster molecules. J Am Chem Soc 122(11):2673–2674

    Article  CAS  Google Scholar 

  • Yu Q, Liu CY (2009) Study of magic-size-cluster mediated formation of CdS nanocrystals: properties of the magic-size clusters and mechanism implication. J Phys Chem C 113(29):12766–12771

    Article  CAS  Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  CAS  Google Scholar 

  • Yu M, Fernando GW, Li R, Papadimitrakopoulos F, Shi N, Ramprasad R (2007) Discrete size series of CdSe quantum dots: a combined computational and experimental investigation. J Comput Aided Mater Des 14(1):167–174

    Article  CAS  Google Scholar 

  • Zhang Y, Dai Q, Li X, Zou B, Wang Y, Yu WW (2011) Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. J Nanopart Res 13:3721–3729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsueh-Shih Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HS., Kumar, R.V. Growth of ultrasmall nanoparticles based on thermodynamic size focusing. J Nanopart Res 14, 1207 (2012). https://doi.org/10.1007/s11051-012-1207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1207-8

Keywords

Navigation