Skip to main content
Log in

Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The chitosan-coated magnetic nanoparticles (CS MNPs) were in situ synthesized by cross-linking method. In this method; during the adsorption of cationic chitosan molecules onto the surface of anionic magnetic nanoparticles (MNPs) with electrostatic interactions, tripolyphosphate (TPP) is added for ionic cross-linking of the chitosan molecules with each other. The characterization of synthesized nanoparticles was performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS/ESCA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and vibrating sample magnetometry (VSM) analyses. The XRD and XPS analyses proved that the synthesized iron oxide was magnetite (Fe3O4). The layer of chitosan on the magnetite surface was confirmed by FTIR. TEM results demonstrated a spherical morphology. In the synthesis, at higher NH4OH concentrations, smaller sized nanoparticles were obtained. The average diameters were generally between 2 and 8 nm for CS MNPs in TEM and between 58 and 103 nm in DLS. The average diameters of bare MNPs were found as around 18 nm both in TEM and DLS. TGA results indicated that the chitosan content of CS MNPs were between 15 and 23 % by weight. Bare and CS MNPs were superparamagnetic. These nanoparticles were found non-cytotoxic on cancer cell lines (SiHa, HeLa). The synthesized MNPs have many potential applications in biomedicine including targeted drug delivery, magnetic resonance imaging (MRI), and magnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MNPs:

Magnetic nanoparticles, magnetite, Fe3O4

CS MNPs:

Chitosan-coated magnetic nanoparticles

CS:

Chitosan

TPP:

Tripolyphosphate

XRD:

X-ray diffraction

XPS/ESCA:

X-ray photoelectron spectroscopy

FTIR:

Fourier transform infrared spectroscopy

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

TGA:

Thermal gravimetric analysis

VSM:

Vibrating sample magnetometry

Ms:

Saturated magnetization

MRI:

Magnetic resonance imaging

SPIONs:

Superparamagnetic iron oxide nanoparticles (50–180 nm)

USPIONs:

Ultrasmall superparamagnetic iron oxide nanoparticles (10–50 nm)

VSPIONs:

Very small superparamagnetic iron oxide nanoparticles (<10 nm)

References

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  Google Scholar 

  • Bhattarai SR, Kc RB, Kim SY, Sharma M, Khil MS, Hwang PH, Chung GH, Kim HY (2008) N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. J Nanobiotechnol 6:1

    Article  Google Scholar 

  • Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate. AAPS PharmSci Tech 7(2):E138–E143

    Article  Google Scholar 

  • Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436

    Article  CAS  Google Scholar 

  • Coates J (2000) Encyclopedia of analytical chemistry. In: Meyers RA (ed) Interpretation of infrared spectra, a practical approach. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  • Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504

    Article  CAS  Google Scholar 

  • Daou TJ, Pourroy G, Bégin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  • Das M, Mishra D, Maiti TK, Basak A, Pramanik P (2008) Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 19(41):415101

    Article  Google Scholar 

  • Denkbas EB, Kilicay E, Birlikseven C, Ozturk E (2002) Magnetic chitosan microspheres: preparation and characterization. React Funct Polym 50:225–232

    Article  CAS  Google Scholar 

  • Dung DTK, Hai1 TH, Phuc LH, Long BD, Vinh LK, Truc PN (2009) Preparation and characterization of magnetic nanoparticles with chitosan coating, APCTP–ASEAN Workshop on Advanced Materials Science and Nanotechnology (AMSN08) IOP Publishing Journal of Physics: Conference Series 187, 012036

  • Florence AT, Hillery AM, Hussain N, Jani PU (1995) Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 36:39–46

    Article  CAS  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nano Biosci 3:66–73

    Google Scholar 

  • Hritcu D, Popa MI, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796

    CAS  Google Scholar 

  • Hu M, Li Y, Decker EA, Xiao H, McClements DJ (2010) Influence of tripolyphosphate cross-linking on the physical stability and lipase digestibility of chitosan-coated lipid droplets. J Agric Food Chem 58:1283–1289

    Article  CAS  Google Scholar 

  • Kavaz D, Odabas S, Guven E, Demirbilek M, Denkbas EB (2010) Bleomycin loaded magnetic chitosan nanoparticles as multifunctional nanocarriers. J Bioact Comp Poly 25:305–318

    Article  CAS  Google Scholar 

  • Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  • Lefevre ME, Vanderhoff JW, Laissue JA, Joel DD (1978) Accumulation of 2-mm latex particles in mouse Peyer’s patches during chronic latex feeding. Cell Mol Life Sci 34:120–122

    Article  CAS  Google Scholar 

  • Li MC, Liu C, Xin M, Zhao H, Wang M, Feng Z, Sun X (2005) Preparation and characterization of acylated chitosan. Chem Res Chinese U 21(1):114–116

    Google Scholar 

  • Li G, Jiang Y, Huang K, Ding P, Chen J (2008) Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloy Compd 466:451–456

    Article  CAS  Google Scholar 

  • Liu R, Zhao Y, Huang R, Zhao Y, Zhou H (2010) Shape evolution and tunable properties of monodisperse magnetite crystals synthesized by a facile surfactant-free hydrothermal method. Eur J Inorg Chem 2010(28):4499–4505

    Article  Google Scholar 

  • Lu G, Kong L, Sheng B, Wang G, Gong Y, Zhang X (2007) Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur Polym J 43:3807–3818

    Google Scholar 

  • Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693

    CAS  Google Scholar 

  • Ma W, Ya F, Han M, Wang R (2007) Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J Hazard Mater 143:296–302

    Article  CAS  Google Scholar 

  • Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater 308(2):289–295

    Article  CAS  Google Scholar 

  • Massart R, Cabuil V (1987) Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules. J Chim Phys 84:961–973

    Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  CAS  Google Scholar 

  • Neuberger T, Schopf B, Hofmann H, Hofmann M, Vonrechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496

    Article  CAS  Google Scholar 

  • Paama L, Pitkänen I, Halttunen H, Perämäki P (2003) Infrared evolved gas analysis during thermal investigation of lanthanum, europium and samarium carbonates. Thermochim Acta 403:197–206

    Article  CAS  Google Scholar 

  • Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62:28–41

    Article  CAS  Google Scholar 

  • Pison U, Welte T, Giersig M, Groneberg DA (2006) Nanomedicine for respiratory diseases. Eur J Pharmacol 533(1–3):341–350

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57

    Article  CAS  Google Scholar 

  • Sanders E, Ashworth CT (1961) A study of particulate intestinal absorption and hepatocellular uptake. Exp Cell Res 22:114–137

    Article  Google Scholar 

  • Singh S, Pandey VK, Tewari RP, Agarwal V (2011) Nanoparticle based drug delivery system: advantages and applications. Ind J Sci Tech 4(3):167–169

    Google Scholar 

  • Teng X, Black D, Watkins NJ, Gao Y, Yang H (2003) Platinum–maghemite core–shell nanoparticles using a sequential synthesis. Nano Lett 3(2):261–264

    Article  CAS  Google Scholar 

  • Tiaboonchai W, Limpeanchob N (2007) Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm 329:142–149

    Article  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  Google Scholar 

  • Wan Y, Creber KAM, Peppley B, Bui VT (2003) Synthesis, characterization and ionic conductive properties of phosphorylated chitosan membranes. Macromol Chem Physiol 204:850–858

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Zhou Y, Jia D (2009) In situ mineralization of magnetite nanoparticles in chitosan hydrogel. Nanoscale Res Lett 4(9):1041–1046

    Article  CAS  Google Scholar 

  • Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    Article  CAS  Google Scholar 

  • Weissleder R, Cheng H-C, Bogdanova A, Bogdanov A Jr (1997) Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258–263

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4–chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100(14):3459–3464

    Article  CAS  Google Scholar 

  • Xu H, Tong N, Cui L, Lu Y, Gu H (2007) Preparation of hydrophilic magnetic nanospheres with high saturation magnetization. J Magn Magn Mater 311:125–130

    Article  CAS  Google Scholar 

  • Ye XR, Daraio C, Wang C, Talbot JB, Jin S (2006) Room temperature solvent-free synthesis of monodisperse magnetite nanocrystals. J Nanosci Nanotechnol 6:852–856

    Article  CAS  Google Scholar 

  • Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667

    Article  CAS  Google Scholar 

  • Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  • Zhang L, Zhu X, Sun H, Chi G, Xu J, Sun Y (2010a) Control synthesis of magnetic Fe3O4–chitosan nanoparticles under UV irradiation in aqueous system. Curr Appl Phys 10:828–833

    Article  Google Scholar 

  • Zhang XL, Niu HY, Zhang SX, Cai YQ (2010b) Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples. Anal Bioanal Chem 397:791–798

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of Assist. Prof. Dr Bora Mavis for FTIR is gratefully acknowledged, as well as financial support by TÜBİTAK-TBAG(1001)/109T949.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gozde Unsoy or Ufuk Gunduz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unsoy, G., Yalcin, S., Khodadust, R. et al. Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14, 964 (2012). https://doi.org/10.1007/s11051-012-0964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0964-8

Keywords

Navigation