Skip to main content
Log in

Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Candle soot deposited on copper plate was collected, and dispersed in various organic solvents, and in water. These non-functionalized samples were probed with an array of experimental techniques. Results of energy-dispersive X-ray analysis confirmed the absence of metallic elements and X-ray diffraction (XRD) study confirmed the presence of amorphous as well as graphitized carbon in these nanostructures with minimum grain size ≈2 nm. TEM data revealed the presence of 30 nm diameter spherical carbon nanoparticles and dynamic light scattering determined the average hydrodynamic diameter ≈120 nm in water, implying the packing of these nanoparticles into clusters. Raman spectroscopy showed characteristic peaks located at 1324 and 1591 cm−1 corresponding to the D (diamond) and G (graphite) phase of carbon with the characteristic ratio I D /I G  ≈ 1.77, yielding 2.4 nm grain size consistent with XRD data. The electrophoresis measurements yielded mean zeta potential values ≈−22 mV in water. The UV–Vis absorption and photoluminiscence (PL) spectra were found to be independent of the solvent nature and polarity, with absorption bands located around 430, 405, 385, and 335 nm, and PL emission peaks lying in the region 390 to 465 nm. Average emission lifetime measured by time resolved fluorescence spectroscopy was observed to decrease with increase in solvent polarity for a particular excitation, and with increasing excitation wavelength in all solvents. It is shown that these nanoparticles have the potential to be used as green fluorescence probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    Article  CAS  Google Scholar 

  • Bae JH, Shanmugharaj AM, Noh WH, Choi WS, Ryu SH (2007) Appl Surf Sci 253:4150–4155

    Article  CAS  Google Scholar 

  • Baker SN, Baker GA (2010) Luminescent carbon nanodots emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  • Bohidar HB (2002) In: Handbook of polyelectrolytes, vol 2. American Scientific Publishers, California

  • Bohidar HB, Kumar P (2010) Non-functionalized carbon nanoparticles having fluorescence characteristics, method of preparation thereof, and their use as bioimaging and solvent sensing agents. Indian Patent Appl No DEL/2184 and WO 2012/035545

  • Bottini M, Mustelin T (2007) Nanosynthesis by candlelight. Nat Nanotechnol 2:599–600

    Article  CAS  Google Scholar 

  • Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319

    Article  CAS  Google Scholar 

  • Carey DM, Korenowski GM (1998) Measurement of the Raman spectrum of liquid water. J Chem Phys 108:2669–2675

    Article  CAS  Google Scholar 

  • Cohen AE (2005) Carbon nanotubes provide a charge. Science 300:1235–1236

    Article  Google Scholar 

  • De Heer WA, Ugarte D (1993) Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett 207:480–486

    Article  Google Scholar 

  • Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  • Dorset DL, McCourt MP (1994) Automated structure analysis in electron crystallography: phase determination with the tangent formula and least-squares refinement. Acta Crystallogr Sec A Found Crystallogr 50:287–292

    Article  Google Scholar 

  • Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14106

    Article  CAS  Google Scholar 

  • Galvez A, Herlin-Boime N, Reynaud C, Clinard C, Rouzaud JN (2002) Carbon nanoparticles from laser pyrolysis. Carbon 40:2775–2789

    Article  CAS  Google Scholar 

  • Goncalves H, Esteves da Silva JCG (2010) Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J Fluorescence 20:1023–1028

    Article  Google Scholar 

  • Guo YG, Hu YS, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 26:2783–2785

    Article  Google Scholar 

  • Kaelble EF (1976) Handbook of X-rays. McGraw-Hill, NewYork

    Google Scholar 

  • Kim TW, Chung PW, Slowing II, Tsunoda M, Yeung ES, Lin VSY (2008) Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett 8:3724–3727

    Article  CAS  Google Scholar 

  • Kimura Y, Sato T, Kaito C (2004) Production and structural characterization of carbon soot with narrow UV absorption feature. Carbon 42:33–38

    Article  CAS  Google Scholar 

  • Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393

    Article  CAS  Google Scholar 

  • Kumar P, Bohidar HB (2010a) Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids Surf A Phys Eng Aspects 361:13–24

    Article  CAS  Google Scholar 

  • Kumar P, Bohidar HB (2010b) Interaction of soot derived multi-carbon nanoparticles with lung surfactants and their possible internalization inside alveolar cavity. J Exp Biol 48:1037–1042

    CAS  Google Scholar 

  • Kumar P, Karmakar S, Bohidar HB (2008) Anomalous self-aggregation of carbon nanoparticles in polar, non-polar and binary solvents. J Phys Chem C 112:15113–15121

    Article  CAS  Google Scholar 

  • Kumar P, Meena R, Paulraj R, Chanchal A, Verma AK, Bohidar HB (2012) Fluorescence behavior of non-functionalized carbon nanoparticles and their in vitro applications in imaging and cytotoxic analysis of cancer cells. Colloids Surf B Biointerfaces. 91:34–40

    Article  CAS  Google Scholar 

  • Lakowicz JR (2002) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Landt L, Klunder K, Dahl JE, Carlson RMK, Möller T, Bostedt C (2009) Optical Response of diamond nanocrystals as a function of particle size, shape, and symmetry. Phys Rev Lett 103:047402–047404

    Article  Google Scholar 

  • Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, Zhang F (2010) Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res 3:429–437

    Article  CAS  Google Scholar 

  • Lipson H, Stokes AR (1942) A new structure of carbon. Nature (London) 149:328

    Article  CAS  Google Scholar 

  • Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475

    Article  CAS  Google Scholar 

  • Mao X-J, Zheng H-Z, Long Y-J, Du J, Hao J-Y, Wang L–L, Zhou D-B (2010) Study on the fluorescence characteristics of carbon dots. Spectrochim Acta Part A Mol Biomol Spectrosc 75:553–557

    Article  Google Scholar 

  • Mochalin VN, Gogotsi Y (2009) Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J Am Chem Soc 131:4594–4595

    Article  CAS  Google Scholar 

  • Mohanty B, Verma AK, Claesson P, Bohidar HB (2007) Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot. Nanotechnology 18:445102

    Google Scholar 

  • Murr LE, Guerrero PA (2006) Carbon nanotubes in wood soot. Atmos Sci Lett 7:93–95

    Article  Google Scholar 

  • Nixon DE, Parry GS, Ubbelohde AR (1996) Order-disorder transformations in graphite nitrates. Proc R Soc Lond Ser A 291:324–339

    Google Scholar 

  • Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M (2010) Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 46:3681–3683

    Article  CAS  Google Scholar 

  • Stasio SD (2001) Electron microscopy evidence of aggregation under three different size scales for soot nanoparticles in flame. Carbon 39:109–118

    Article  Google Scholar 

  • Sun YP, Zhou B, Lin Y, Wang W et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  • Sun YP, Wang X, Lu FS, Cao L, Meziani MJ, Luo PJG, Gu LR, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112:18295–18298

    CAS  Google Scholar 

  • Torricelli G, A Akraiam A, Haeften Kvon (2011) Size-selecting effect of water on fluorescent silicon clusters. Nanotechnology 22:315711

  • Wang Z, Li F, Stein A (2007) Direct synthesis of shaped carbon nanoparticles with ordered cubic mesostructure. Nano Lett 7:3223–3226

    Article  CAS  Google Scholar 

  • Wang X, Cao XL, Yang S-T, Lu F, Meziani MJ, Tian L, Sun KW, Bloodgood MA, Sun Y-P (2010) Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Ed 49:5310–5314

    Article  CAS  Google Scholar 

  • Willey TM, Bostedt C, Tvan Buuren, Dahl JE, Liu SG, Carlson RMK, Terminello LJ, Möller T (2005) Molecular limits to the quantum confinement model in diamond clusters. Phys Rev Lett 95:113401–113404

    Article  CAS  Google Scholar 

  • Wilson WL, Szajowski PF, Brus LE (1993) Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262:1242–1244

    Article  CAS  Google Scholar 

  • Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  • Yeh C, Lu ZW, Froyen S, Zunger A (1992) Zinc-blende-wurtzite polytypism in semiconductors. Phys Rev B 46:10086–10097

    Article  CAS  Google Scholar 

  • Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118

    Article  Google Scholar 

  • Zhou J, Booker C, Li RY, Zhou XT, Sham TK, Sun XL, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745

    Article  CAS  Google Scholar 

  • Zhu H, Wang X, Li Y, Wang Z, Wang F, Yang X (2009) Microwave synthesis of fluorescent carbon nanoparticles with electro-chemiluminescence properties. Chem Commun 34:5118–5120

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University for providing access TRFS facility. PK thanks to University Grants Commission, Government of India for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. B. Bohidar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Bohidar, H.B. Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. J Nanopart Res 14, 948 (2012). https://doi.org/10.1007/s11051-012-0948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0948-8

Keywords

Navigation