Skip to main content
Log in

Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, we report a simple microwave-assisted method for the synthesis of Cu2ZnSnS4 (CZTS) nanocrystals. The as-prepared CZTS nanoparticles have a mono-dispersed size of about 10–15 nm. CZTS is preliminarily applied as a novel anode material for lithium ion batteries (LIBs). It is composed of three elements that are electrochemically active toward Li, which lead to LIBs with good power density, ratio ability, and cycling performance. The synthesis process of CZTS nanocrystals is simple, low cost, and broadly applicable providing a new avenue for electrode materials with enhanced conductivity and power. The CZTS nanocrystal anode has a reversible capacity of 288 mAh g−1 at 0.1 A g−1 current density and it can still maintain a retention capacity of 81 % after 30 cycles. These results show that CZTS nanocrystals have interesting electrochemical properties and might have the potential for application in LiBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  • Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechol 3:31–35

    Article  CAS  Google Scholar 

  • Chen JS, Cheah YL, Chen YT, Jayaprakash N, Madhavi S, Yang YH, Lou XW (2009) SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. J Phys Chem C 113:20504–20508

    Article  CAS  Google Scholar 

  • Chen JZ, Yang L, Fang SH, Hirano S (2011) Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries. Electrochem Commun 13:848–851

    Article  Google Scholar 

  • Dai HQ, Xu H, Zhou YN, Lu F, Fu ZW (2012) Electrochemical characteristics of Al2O3-doped ZnO films by magnetron sputtering. J Phys Chem C 116:1519–1525

    Article  CAS  Google Scholar 

  • Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551

    Article  CAS  Google Scholar 

  • Gao J, Lowe MA, Abrua HD (2011) Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem Mater 23:3223–3227

    Article  CAS  Google Scholar 

  • Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  • Guo QJ, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131:11672–11673

    Article  CAS  Google Scholar 

  • Guo QJ, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386

    Article  CAS  Google Scholar 

  • He Y, Lu HT, Sai LM, Lai WY, Fan QL, Wang LH, Huang W (2006) Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J Phys Chem B 110:13370–13374

    Article  CAS  Google Scholar 

  • Kim H, Cho J (2008) Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem Mater 20:1679–1681

    Article  CAS  Google Scholar 

  • Kim TJ, Kim C, Son D, Choi M, Park B (2007) Novel SnS2-nanosheet anodes for lithium-ion batteries. J Power Sources 167:529–553

    Article  CAS  Google Scholar 

  • Li YG, Tan B, Wu YY (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270

    Article  CAS  Google Scholar 

  • Liu JP, Li YY, Huang XT, Ding RM, Hu YY, Jiang J, Liao L (2009) Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J Mater Chem 19:1859–1864

    Article  CAS  Google Scholar 

  • Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:28–62

    Article  CAS  Google Scholar 

  • Mehata MS, Majumder M, Mallik B, Ohta N (2010) External electric field effects on optical property and excitation dynamics of capped CdS quantum dots embedded in a polymer film. J Phys Chem C 114:15594–15601

    Article  CAS  Google Scholar 

  • Pein A, Baghbanzadeh M, Rath T, Haas W, Maier E, Amenitsch H, Hofer F, Kappe CO, Trimmel G (2011) Investigation of the formation of CuInS2 nanoparticles by the oleylamine route:comparison of microwave-assisted and conventional syntheses. Inorg Chem 50:193–200

    Article  CAS  Google Scholar 

  • Redinger A, Berg DM, Dale PJ, Siebentritt S (2011) The consequences of kesterite equilibria for efficient solar cells. J Am Chem Soc 133:3320–3323

    Article  CAS  Google Scholar 

  • Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131:12054–12055

    Article  CAS  Google Scholar 

  • Rong A, Gao XP, Li GR, Yan TY, Zhu HY, Qu JQ, Song DY (2006) Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J Phys Chem B 110:14754–14760

    Article  CAS  Google Scholar 

  • Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2009) Lithium-storage and cycleability of nano-CdSnO3 as an anode material for lithium-ion batteries. J Power Sources 192:627–635

    Article  CAS  Google Scholar 

  • Song T, Xia JL, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang YG, Hwang KC, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium-ion batteries. Nano Lett 10:1710–1716

    Article  CAS  Google Scholar 

  • Sun C, Gardner JS, Long G, Bajracharya C, Thurber A, Punnoose A, Rodriguez RG, Pak JJ (2010) Controlled stoichiometry for quaternary CuInxGa1-xS2 chalcopyrite nanoparticles from single-source precursors via microwave. Chem Mater 22:2699–2701

    Article  CAS  Google Scholar 

  • Venkatachalam S, Zhu HW, Masarapu C, Hung KH, Liu Z, Suenaga K, Wei BQ (2009) In situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. ACS Nano 3:2177–2184

    Article  CAS  Google Scholar 

  • Washington AL, Strouse GF (2009) Selective microwave absorption by trioctyl phosphine selenide: does it play a role in producing multiple sized quantum dots in a single reaction? Chem Mater 21:2770–2776

    Article  CAS  Google Scholar 

  • Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F, Cheng HM (2010a) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  • Wu CC, Shiau CY, Ayele DW, Su WN, Cheng MY, Chiu CY, Hwang BJ (2010b) Rapid microwave-enhanced solvothermal process for synthesis of CuInSe2 particles and its morphologic manipulation. Chem Mater 22:4185–4190

    Article  CAS  Google Scholar 

  • Xu W, Canfield NL, Wang DY, Xiao J, Nie ZM, Zhang JG (2010) A three-dimensional macroporous Cu/SnO2 composite anode sheet prepared via a novel method. J Power Sources 195:7403–7408

    Article  CAS  Google Scholar 

  • Yang R, Zhao W, Zheng J, Zhang XZ, Li XG (2010) One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage. J Phys Chem C 114:20272–20276

    Article  CAS  Google Scholar 

  • Ye JF, Zhang HJ, Yang R, Li XG, Qi LM (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6:296–306

    Article  CAS  Google Scholar 

  • Zhang DW, Yi TH, Chen CH (2005) Cu nanoparticles derived from CuO electrodes in lithium cells. Nanotechnology 16:2338–2341

    Article  CAS  Google Scholar 

  • Zhang WX, Zeng H, Yang ZH, Wang Q (2012) New strategy to the controllable synthesis of CuInS2 hollow nanospheres and their applications in lithium ion batteries. J Solid State Chem 186:58–63

    Article  CAS  Google Scholar 

  • Zhu XJ, Zhu YW, Muralib S, Stoller MD, Ruoff RS (2011) Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium-ion batteries prepared by homogenous coprecipitation. J Power Sources 196:6473–6477

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been financially supported by the Research Grants Council of HKSAR (No. CityU 101910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sing Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Xu, J., Xi, L. et al. Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. J Nanopart Res 14, 931 (2012). https://doi.org/10.1007/s11051-012-0931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0931-4

Keywords

Navigation