Skip to main content
Log in

Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cubic monodisperse MFe2O4 ferrite nanoparticles (M = Fe, Co, and Mn) with tunable sizes between 7 and 20 nm and a narrow size distribution have been achieved in a one step synthesis by thermal decomposition of Fe(III), Co (II), and Mn(II) oleates. These nanoparticles have been functionalized with dimercaptosuccinic acid (DMSA), 11-mercaptoundecanoic acid (MUA), and bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate (MATS) to grant them aqueous stability and the possibility for further functionalization with different biomolecules. Their structural, magnetic, and colloidal properties have also been studied to determine their chemical and physical properties and the degree of stability under physiological conditions that will determine their future use in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NP:

Nanoparticles

MUA:

Dimercaptosuccinic acid: DMSA: 11-mercaptoundecanoic acid

MATS:

bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

RES:

Reticuloendothelial system

rpm:

Revolutions per minute

DMSO:

Dimethyl sulfoxide

KOH:

Potassium hydroxide

HNO3 :

Nitric acid

DMF:

N,N-dimethylformamide

ICP-OES:

Inductively coupled plasma optical emission spectrometry

TEM:

Transmission electron microscopy

TGA:

Thermal gravimetric analysis

FTIR:

Fourier transform infrared

XRD:

X-ray diffraction

DLS:

Dynamic light scattering

PBS:

Phosphate buffered saline

Fe(ole)3 :

Iron (III) oleate

Mn(ole)2 :

Manganese (II) oleate

Co(ole)2 :

Cobalt (II) oleate

H c :

coercivity

M r :

Remanent magnetization

M s :

Saturation magnetic moment

RT:

Room temperature

Fig:

Figure

PZC:

Point of zero charge

References

  • Bagaria HG, Ada ET et al (2006) Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22(18):7732–7737. doi:10.1021/la0601399

    Article  CAS  Google Scholar 

  • Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33(2):563–572. doi:10.1002/pssb.19690330209

    Article  CAS  Google Scholar 

  • Bronstein LM, Atkinson JE et al (2011) Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Langmuir 27:3044–3055. doi:10.1021/la104686d

    Article  CAS  Google Scholar 

  • Chen C-J, Lai H-Y et al (2009) Preparation of monodisperse iron oxide nanoparticles via the synthesis and decomposition of iron fatty acid complexes. Nanoscale Res Lett 4:1343–1350. doi:10.1007/s11671-009-9403-x

    Article  CAS  Google Scholar 

  • Cheon J-W, Jun Y-W et al. (2007) MRI contrast agents containing water-soluble NPs of manganese oxide or manganese metal oxide. p 44

  • Compton RG (1987) Electrode kinetics: reactions. Elsevier Publishing Company, New York

    Google Scholar 

  • Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, Hoboken

    Google Scholar 

  • Duanmu C, Saha I et al (2006) Dendron-functionalized superparamagnetic NPs with switchable solubility in organic and aqueous media: matrices for homogeneous catalysis and potential MRI contrast agents. Chem Mater 18(25):5973–5981. doi:10.1021/cm061782j

    Article  CAS  Google Scholar 

  • Fan Xa, Guan J et al (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of subtoichiometric spinel Co ferrite octahedra. Eur J Inorg Chem 2010(3):419–426. doi:10.1002/ejic.200900681

    Article  Google Scholar 

  • Fauconnier N, Pons JN et al (1997) Thiolation of maghemite nps by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433

    Article  CAS  Google Scholar 

  • Figuerola A, Corato RD et al (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):1126–1143. doi:10.1016/j.phrs.2009.12.01

    Article  Google Scholar 

  • Guardia P, Batle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759. doi:10.1016/j.jmmm.2007.03.085

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nps for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • Gyergyek S, Makovec D et al (2010) Influence of synthesis method on structural and magnetic properties of Co ferrite nps. J Nanopart Res 12:1263–1273. doi:10.1007/s11051-009-9833-5

    Article  CAS  Google Scholar 

  • Häggström L, Kamali S et al (2008) “Mössbauer and magnetization studies of iron oxide nanocrystals” Hyperfine Interact 183(1–3): 49–53. doi:10.1007/s10751-008-9750-5

    Google Scholar 

  • Hajdú A, Illés E et al (2009) Surface charging, polyanionic coating and colloid stability of magnetite nps. Colloids Surf A 347(1–3):104–108. doi:10.1016/j.colsurfa.2008.12.039

    Article  Google Scholar 

  • Han YC, Cha HG et al (2007) Synthesis of highly magnetized iron NPs by a solventless thermal decomposition method. J Phys Chem C 111(17):6. doi:10.1021/jp0686285

    Article  Google Scholar 

  • Horng L, Chern G et al (2004) Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin films. J Magn Magn Mater 270(3):389–396. doi:10.1016/j.jmmm.2003.09.005

    Article  CAS  Google Scholar 

  • Hu F, MacRenaris KW et al (2009) Ultrasmall, water-soluble magnetite nps with high relaxivity for MRI. J Phys Chem C 113:20855–20860. doi:10.1021/jp907216g

    Article  CAS  Google Scholar 

  • Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi:10.1021/ja016812s

    Article  CAS  Google Scholar 

  • Jain N, Wang Y et al (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472. doi:10.1021/la903513v

    Article  Google Scholar 

  • Jana NR, Chen Y et al (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935. doi:10.1021/cm049221k

    Article  CAS  Google Scholar 

  • Joshi HM, Lin YP et al (2009) Effects of shape and size of Co ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:11761–17767. doi:10.1021/jp905776g

    Google Scholar 

  • Jun Y-w, Huh Y-M et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via MRI. J Am Chem Soc 127(16):5732–5733. doi:10.1021/ja0422155

    Article  CAS  Google Scholar 

  • Kraus A, Jainae K et al (2009) Synthesis of MPTS-modified Co ferrite NPs and their adsorption properties in relation to Au(III). J Colloid Interface Sci 338:359–365. doi:10.1016/j.jcis.2009.06.045

    Article  CAS  Google Scholar 

  • Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709. doi:10.1021/ar8000537

    Article  CAS  Google Scholar 

  • Laurent S, Dutz S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    CAS  Google Scholar 

  • Lee J-H, Jang J-t et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech 6:418–422. doi:10.1028/NNANO.2011.95

    Article  CAS  Google Scholar 

  • López-Cruz A, Barrera C et al (2009) Water dispersible iron oxide nps coated with covalently linked chitosan. J Mater Chem 19(37):6870–6876. doi:10.1039/B908777J

    Article  Google Scholar 

  • Maaz K, Mumtaz A et al (2006) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nps prepared by wet chemical route. J Magn Magn Mater 308:289–295. doi:10.1016/j.jmm.2006.06.003

    Article  Google Scholar 

  • Mathur S, Cavelius C et al (2009) Co ferrite NPs from single and multi-component precursor systems. Z Anorg Allg Chem 635(6–7):898–902. doi:10.1002/zaac.200900010

    Article  CAS  Google Scholar 

  • Méthivier C, Beccard B et al (2003) In situ analysis of a mercaptoundecanoic acid layer on Au in liquid phase, by PM-IRAS. Evidence for chemical changes with the solvent. Langmuir 19(21):8807–8812. doi:10.1021/la0345789

    Article  Google Scholar 

  • Mohammadi Z, Wang X et al (2010) Magnetic polyvinylamine nanoparticles by in situ precipitation reaction. J Polym Sci Part A 48(4):991–996. doi:10.1002/pola.23847

    Article  CAS  Google Scholar 

  • Naseri MG, Saion EB et al (2010) Simple synthesis and characterization of Co ferrite NPs by a thermal treatment method. J Nanomat 2010:8. doi:10.1155/2010/907686

    Google Scholar 

  • Ngo AT, Bonville P et al (2001) Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J Appl Phys 89(6):3370–3376. doi:10.1063/1.1347001

    Article  CAS  Google Scholar 

  • Nuzzo RG, Dubois LH et al (1990) Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc 112(2):558–569. doi:10.1021/ja00158a012

    Article  CAS  Google Scholar 

  • Park J, An K et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi:10.1038/nmat1251

    Article  CAS  Google Scholar 

  • Park J, Joo J et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi:10.1002/anie.200603148

    Article  CAS  Google Scholar 

  • Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344. doi:10.1021/ja9805425

    Article  CAS  Google Scholar 

  • Pino P d, Munoz-Javier A et al (2010) Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 10(10):3914–3921. doi:10.1021/nl102485v

    Article  Google Scholar 

  • Roca AG, Morales MP et al (2006) Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Trans Magn 42(10):3025–3029. doi:10.1109/TMAG.2006.880111

    Article  Google Scholar 

  • Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite NPs. J Phys Chem C 111(50):18577–18584. doi:10.1021/jp075133m

    Article  CAS  Google Scholar 

  • Roca AG, Costo R et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22):224002–224012. doi:10.1088/0022-3727/42/22/224002

    Article  Google Scholar 

  • Ross CA, Smith HI et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17(6):3168–3176. doi:10.1116/1.590974

    Article  CAS  Google Scholar 

  • Salazar-Álvarez G, Qin J et al (2008) Cubic versus spherical magnetic NPs: the role of surface anisotropy. J Am Chem Soc 130:13234–13239. doi:10.1021/ja0768744

    Article  Google Scholar 

  • Salgueiriño-Maceira V, Liz-Marzán LM et al (2004) Water-based ferrofluids from FexPt1-x NPs synthesized in organic media. Langmuir 20(16):6946–6950. doi:10.1021/la049300a

    Article  Google Scholar 

  • Sangmanee M, Maensiri S (2009) “Nanostructures and magnetic properties of Co ferrite (CoFe2O4) fabricated by electrospinning” Appl Phys A 97(1): 167–177 doi:10.1007/s00339-009-5256-5

  • Schabes ME (1991) Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles. J Magn Magn Mater 95(3):249–288. doi:10.1016/0304-8853(91)90225-Y

    Article  CAS  Google Scholar 

  • Sharma SK, Vargas JM et al (2011) “Synthesis and ageing effect in FeO nanoparticles: transformation to core–shell FeO/Fe3O4 and their magnetic characterization.” J Alloys Comp 509(22):6414–6417 doi:10.1016/j.jallcom.2011.03.072

  • Simeonidis K, Mourdikoudis S et al (2008) “Shape and composition oriented synthesis of Co NPs.” Phys Adv Mater Winter Sch: 8 pp

  • Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, Chichester

  • Song Q, Zhang J (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168. doi:10.1021/ja049931r

    Article  CAS  Google Scholar 

  • Sun S, Zeng H et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) NPs. J Am Chem Soc 126(1):273–279. doi:10.1021/ja0380852

    Article  CAS  Google Scholar 

  • Taboada E, Rodríguez E et al (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide NPs with high magnetization. Evaluation as potential T1 MRI contrast agents for molecular imaging. Langmuir 23(8):4583–4588. doi:10.1021/la063415s

    Article  CAS  Google Scholar 

  • Tirosh E, Shemer G et al (2006) Optimizing Co ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18(2):465–470. doi:10.1021/cm052401p

    Article  CAS  Google Scholar 

  • Vestal CR, Song Q et al (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108(47):18222–18227. doi:10.1021/jp0464526

    Article  CAS  Google Scholar 

  • Vlaskou D, Mykhaylyk O et al (2010) Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery. Adv Funct Mater 20(22):3881–3894. doi:10.1002/adfm.200902388

    Article  CAS  Google Scholar 

  • Wang CY, Hong JM et al (2010) Facile method to synthesize oleic acid-capped magnetite nps. Chin Chem Lett 21(2):179–182. doi:10.1016/j.cclet.2009.10.024

    Article  CAS  Google Scholar 

  • Wiogo HTR, Lim M et al (2010) Stabilization of magnetic iron oxide NPs in biological media by fetal bovine serum (FBS). Langmuir 27(2):843–850. doi:10.1021/la104278m

    Article  Google Scholar 

  • Xi L, Wang Z et al (2011) The enhanced microwave absorption property of CoFe2O4 nps coated with a Co3Fe7-Co nanoshell by thermal reduction. Nanotech 22(4):045707. doi:10.1088/0957-4484/22/4/045707

    Article  Google Scholar 

  • Xie J, Peng S et al (2006) One-pot synthesis of monodisperse iron oxide nps for potential biomedical applications. Pure Appl Chem 78(5):1003–1014. doi:10.1351/pac200678051003

    Article  CAS  Google Scholar 

  • Xu C, Xu K et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic NPs. J Am Chem Soc 126(32):9938–9939. doi:10.1021/ja0464802

    Article  CAS  Google Scholar 

  • Yanez-Vilar S, Sanchez-Andujar M et al (2009) A simple solvothermal synthesis of MFe2O4 (M = Mn, Co and Ni) NP. J Solid State Chem 182(10):2685–2690. doi:10.1016/j.jssc.2009.07.028

    Article  CAS  Google Scholar 

  • Yin M, O’Brien S (2003) Synthesis of monodisperse nanocrystals of manganese oxides. J Am Chem Soc 125(34):1080–1081. doi:10.1021/ja0362656

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MAT2008-01489 to SVV MAT2009-14578-C03-01 for JFM, MAT2011-23641 to MPM, and CSD2007-00010 to MPM) and the Regional Government from Madrid (S009/MAT-1726 to MPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes I. Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, L.I., Somoza, Á., Marco, J.F. et al. Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities. J Nanopart Res 14, 873 (2012). https://doi.org/10.1007/s11051-012-0873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0873-x

Keywords

Navigation