Skip to main content
Log in

Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Fullerenes (C60) represent important carbon nanoparticles, widely investigated for diagnostic and therapeutic uses, mainly because they are characterized by a small size (between 7 and 10 Å) and a large surface area. The cytotoxicity of two fullerene derivatives, functionalized by 1,3-dipolar cycloaddition of azomethine ylides to the C60 cage (1 and 2), the mechanism of cellular uptake (studied with a fluorescein-bearing derivative of 1, hereafter called derivative 3), and the intracellular distribution are the subject of this work. Cell cytotoxicity on human mammary carcinoma cell line (MCF7), evaluated with the MTT test and further confirmed by a flow cytometry approach with DiOC6 and PI probes, showed that derivative 1 was free of necrotic or apoptotic effects even after a long lasting cell exposure. Cell uptake and internalization of derivative 3 reach their zenith within 12 h after treatment, with a tendency to persist up to 72 h; this process was evaluated by flow cytometry and confirmed by confocal microscopy. Thus, it appears that a compound such as derivative 1 may be unspecifically taken up by MCF7 cells, in which it distributes throughout the cytoplasm, apparently avoiding any co-localization within the nucleus and secretory granules. These results suggest a strong interaction between the tested fullerene and mammalian cells and a significant ability of this compound to enter tumor cells, therefore resulting to be a suitable vector to deliver anticancer agents to tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  CAS  Google Scholar 

  • Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11–12):913–923

    Article  CAS  Google Scholar 

  • Chaudhuri P, Harfouche R, Soni S, Hentschel DM, Sengupta S (2009a) Shape effect of carbon nanovectors on angiogenesis. ACS Nano 4(1):574–582

    Article  Google Scholar 

  • Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S (2009b) Fullerenol cytotoxic conjugates for cancer chemotherapy. ACS Nano 3(9):2505–2514

    Article  CAS  Google Scholar 

  • Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15(2):153–172

    Article  CAS  Google Scholar 

  • Dellinger A et al (2010) Uptake and distribution of fullerenes in human mast cells. Nanomedicine 6:575–581

    Article  CAS  Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 14 57(15):2215–2237

    Article  CAS  Google Scholar 

  • Duvvuri M, Krise JP (2005) Intracellular drug sequestration events associated with the emergence of multidrug resistance: a mechanistic review. Front Biosci 10:1499–1509

    Article  CAS  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localization of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  Google Scholar 

  • Gorczyca W (1999) Cytometric analyses to distinguish death processes. Endocr Relat Cancer 6:17–19

    Article  CAS  Google Scholar 

  • Gotink K, Broxterman HJ, Labots M, De Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, Assaraf YG, Pili R, Peters GJ, Verheul HM (2011) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 17(23):7337–7346

    Article  CAS  Google Scholar 

  • Guldi DM, Maggini M, Scorrano G, Prato M (1997) Intramolecular electron transfer in fullerene/ferrocene based donor-bridge-acceptor dyads. J Am Chem Soc 119:974–980

    Article  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    Article  CAS  Google Scholar 

  • Kannan P, John C, Zoghbi SS, Halldin C, Gottesman MM, Innis RB, Hall MD (2009) Imaging the function of P-glycoprotein with radiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther 86(4):368–377

    Article  CAS  Google Scholar 

  • Kessel D, Wilberding C (1984) Mode of action of calcium antagonists which alter anthracycline resistance. Biochem Pharmacol 33(7):1157–1160

    Article  CAS  Google Scholar 

  • Kordatos K, Da Ros T, Bosi S, Vazquez E, Bergamin M, Cusan C, Pellarini F, Tomberli V, Baiti B, Pantarotto D, Georgakilas V, Spalluto G, Prato M (2001) Novel versatile fullerene synthons. J Org Chem 66:4915–4920

    Article  CAS  Google Scholar 

  • Kordatos K, Da Ros T, Prato M, Bensasson VR, Leach S (2003) Absorption spectra of monoaduct and eight bisadduct regioisomers of pyrrolidine derivatives of C60. Chem Phys 293:263–280

    Article  CAS  Google Scholar 

  • Kurtoglu YE, Navath RS, Wang B, Kannan S, Romero R, Kannan RM (2009) Poly(amidoamine) dendrimer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 30:2112–2121

    Article  CAS  Google Scholar 

  • Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol 4(4):14

    Article  Google Scholar 

  • Lu F, Haque ASK, Yang ST, Luo PG, Gu L, Kitaygorodskiy A, Li H, Lacher S, Sun YP (2009) Aqueous compatible fullerene–doxorubicin conjugates. J Phys Chem 113:17768–17773

    CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  • Maggini M, Prato M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31(9):519–526

    Article  Google Scholar 

  • Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C60: synthesis, characterization and functionalization of fullerene-pyrrolidines. J Am Chem Soc 115:9798–9799

    Article  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapies in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235

    Article  CAS  Google Scholar 

  • Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275

    Article  CAS  Google Scholar 

  • Partha R, Mitchell LR, Lyon J, Joshi PP, Conyers JL (2008) Buckysomes: fullerene-based nanocarriers for hydrophobic molecule delivery. ACS Nano 2(9):1950–1958

    Article  CAS  Google Scholar 

  • Surendiran A, Sandhiya S, Pradhan SC, Adithan C (2009) Novel application of nanotechnology in medicine. Indian J Med Res 130:689–701

    CAS  Google Scholar 

  • Tattersall M, Clarke S (2003) Developments in drug delivery: implications for cancer care. Curr Opin Oncol 15:293–299

    Article  Google Scholar 

  • Vail SA, Krawczuk PJ, Guldi DM, Palkar A, Echegoyen L, Tomé JPC, Fazio MA, Schuster DI (2005) Energy and electron transfer in polyacetylene-linked zinc-porphyrin-[60]fullerene molecular wires. Chem Eur J 11:3375–3388

    Article  CAS  Google Scholar 

  • Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    Article  CAS  Google Scholar 

  • Zhanga LW, Yang J, Barron AR, Monteiro-Riviere NA (2009) Endocytic mechanisms and toxicity of a fullerene in human cells. Toxicol Lett 191:149–157

    Article  Google Scholar 

Download references

Acknowledgments

Sincere acknowledgments are due to: Callerio Fondation ONLUS for the fellowship support to M. Lucafò; to Regione FVG project NANOCANCER, to PRIN 2007 (Dr. Pacor) and MIUR, PRIN Contract No. 20085M27SS (Pr. Prato), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Sava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucafò, M., Pacor, S., Fabbro, C. et al. Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells. J Nanopart Res 14, 830 (2012). https://doi.org/10.1007/s11051-012-0830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0830-8

Keywords

Navigation