Skip to main content
Log in

Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A novel chitosan coated poly(butyl cyanoacrylate) (PBCA) nanoparticles loaded doxorubicin (DOX) were synthesized and then conjugated with folic acid to produce a folate-targeted drug carrier for tumor-specific drug delivery. Prepared nanoparticles were surface modified by folate for targeting cancer cells, which is confirmed by FTIR spectroscopy and characterized for shape, size, and zeta potential measurements. The size and zeta potential of prepared DOX-PBCA nanoparticles (DOX-PBCA NPs) were almost 174 ± 8.23 nm and +23.14 ± 4.25 mV, respectively with 46.8 ± 3.32% encapsulation capacity. The transmission electron microscopy study revealed that preparation allowed the formation of spherical nanometric and homogeneous. Fluorescent microscopy imaging and flow cytometry analysis revealed that DOX-PBCA NPs were endocytosed into MCF-7 cells through the interaction with overexpressed folate receptors on the surface of the cancer cells. The results demonstrate that folate-conjugated DOX-PBCA NPs drug delivery system could provide increased therapeutic benefit by delivering the encapsulated drug to the folate receptor positive cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J (2006) Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 23:582–592

    Article  CAS  Google Scholar 

  • Arias JL, Gallardo V, Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of poly (ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release 77:309–321

    Article  CAS  Google Scholar 

  • Behan N, Birkinshaw C, Clarke N (2001) Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials 22:1335–1344

    Article  CAS  Google Scholar 

  • Cho KC, Kim SH, Jeong JH, Park TG (2005) Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(l-lysine) conjugate. Macromol Biosci 5:512–519

    Article  CAS  Google Scholar 

  • Couvreur P, Vauthier C (1991) Polyalkylcyanoacrylate nanoparticles as drug carrier: present state and perspectives. J Control Release 17:187–198

    Article  CAS  Google Scholar 

  • Cummings J, McArdle CS (1986) Studies on the in vivo disposition of adriamycin in human tumors which exhibit different responses to the drug. Br J Cancer 53:835–838

    Article  CAS  Google Scholar 

  • Douglas SJ, Illum L, Davis SS, Kreuter J (1984) Particle size and size distribution of poly(butyl-2-cyanoacrylate) nanoparticles. I: Influence of physicochemical factors. J Colloid Interface Sci 101:149–158

    Article  CAS  Google Scholar 

  • Douglas SJ, Illum L, Davis SS (1985) Particle size and size distribution of poly(butyl 2-cyanoacrylate) nanoparticles. II: Influence of stabilizers. J Colloid Interface Sci 103:154–163

    Article  CAS  Google Scholar 

  • Duan JH, Zhang YD, Han SW, Chen YX, Li B, Liao MM, Chen W, Deng XM, Zhao JF, Huang BY (2010) Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm 400:211–220

    Article  CAS  Google Scholar 

  • Gabizon AT, Horowitz D, Goren D, Tzemach F, Mandelbaum-Shavit M, Qazen M, Zalipsky S (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    Article  CAS  Google Scholar 

  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A (2000) Nuclear delivery of doxorubicin via folate targeted liposomes with bypass of multidrug-resistance efflux. Clin Cancer Res 6:1949–1957

    CAS  Google Scholar 

  • Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC (2007) Targeted nanoparticles for cancer therapy. Nano Today 2:14–21

    Article  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    Article  CAS  Google Scholar 

  • Huang CY, Chen CM, Lee YD (2007) Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int J Pharm 338:267–275

    Article  CAS  Google Scholar 

  • Illum L, Khan MA, Mak E, Davis SS (1986) Evaluation of carrier capacity and release characteristics for poly(butyl 2-cyanoacrylate) nanoparticles. Int J Pharm 30:17–28

    Article  CAS  Google Scholar 

  • Jain KK (2005) Editorial: targeted drug delivery for cancer. Technol Cancer Res Treat 4:311–313

    CAS  Google Scholar 

  • Juan BSD, Briesen HV, Gelperima SE, Kreuter J (2006) Cytotoxicity of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles in rat glioma cell lines using different assays. J Drug Target 14:614–622

    Article  Google Scholar 

  • Lee R, Low P (1994) Delivery of liposomes into cultured KB cells via folate receptor mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  Google Scholar 

  • Lescure F, Zimmer C, Roy D, Couvreur P (1992) Optimization of polyalkylcyanoacrylate nanoparticle preparation: influence of sulfur dioxide and pH on nanoparticle characteristics. J Colloid Interface Sci 154:77–86

    Article  CAS  Google Scholar 

  • Liu L, Zhu XL, Zhang DM, Huang JY, Li GX (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem Commun 9:2547–2550

    Article  CAS  Google Scholar 

  • Lu Y, Low PS (2002) Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother 51:153–162

    Article  CAS  Google Scholar 

  • Lu JY, Lowe DA, Kennedy MD, Low PS (1999) Folate-targeted enzyme prodrug cancer therapy utilizing penicillin-V amidase and a doxorubicin prodrug. J Drug Target 7:44–53

    Article  Google Scholar 

  • Luten J, Van Steenbergen MJ, Lok MC, De Graaff AM, Van Nostrum CF, Talsma H, Hennink WE (2008) Degradable PEG-folate coated poly(DMAEA-co-BA)phosphazene-based polyplexes exhibit receptor-specific gene expression. Eur J Pharm Sci 33:241–251

    Article  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  Google Scholar 

  • Maksimenko O, Pavlov E, Toushov E, Molin A, Stukalov Y, Prudskova T, Feldman V, Kreuter J, Gelperina S (2008) Radiation sterilisation of doxorubicin bound to poly(butyl cyanoacrylate) nanoparticles. Int J Pharm 356:325–332

    Article  CAS  Google Scholar 

  • Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solution. Macromolecules 25:5440–5445

    Article  CAS  Google Scholar 

  • Minko T, Kopeckova P, Pozharov V, Kopecek J (1998) HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line. J Control Release 54:223–233

    Article  CAS  Google Scholar 

  • Monsky WL, Fukumura D, Gohongi T, Ancukiewcz M, Weich HA, Torchilin VP, Yuan F, Jain RK (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 59:4129–4135

    CAS  Google Scholar 

  • Nomura T, Koreeda N, Yamashita F, Takakura Y, Hashida M (1998) Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res 15:128–132

    Article  CAS  Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel MD, Angelo J, Couvreur P (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121–128

    Article  CAS  Google Scholar 

  • Reddy JA, Low PS (2000) Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. J Control Release 64:27–37

    Article  CAS  Google Scholar 

  • Reddy LH, Sharma RK, Murthy RSR (2004) Enhanced tumour uptake of doxorubicin loaded poly(butyl cyanoacrylate) nanoparticles in mice bearing Dalton’s Lymphoma tumour. J Drug Target 12:443–451

    Article  CAS  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548

    Article  CAS  Google Scholar 

  • Verdiere CD, Dubernet C, Nemati F, Poupon MF, Puisieux F, Couvreur P (1994) Uptake of doxorubicin from loaded nanoparticles in multidrug resistant leukemic murine cells. Cancer Chemother Pharmacol 33:504–508

    Article  Google Scholar 

  • Wang S, Lee RJ, Cauchon G, Gorenstein DG (1995) Delivery of antisense oligodeoxyribonucleotides against the human epidermal growth factor receptor into cultured KB cells with liposomes conjugated to folate via polyethyleneglycol. Proc Natl Acad Sci 92:3318–3322

    Article  CAS  Google Scholar 

  • Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA (1992) Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 52:6708–6711

    CAS  Google Scholar 

  • Yoo HS, Park TG (2001) Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Control Release 70:63–70

    Article  CAS  Google Scholar 

  • Yoo HS, Park TG (2004) Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release 100:247–256

    Article  CAS  Google Scholar 

  • Zhang ZR, Liao GT, Nagai T, Hou SX (1996) Mitoxantrone polybutyl cyanoacrylate nanoparticles as an anti-neoplastic targeting drug delivery system. Int J Pharm 139:1–8

    Article  CAS  Google Scholar 

  • Zhang ZP, Lee HS, Feng SS (2007) Folate-decorated poly(lactideco-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials 28:1889–1899

    Article  Google Scholar 

  • Zhang Y, Zhu SY, Yin LC, Qian F, Tang C, Yin CH (2008) Preparation, characterization and biocompatibility of poly(ethylene glycol)-poly(n-butyl cyanoacrylate) nanocapsules with oil core via miniemulsion polymerization. Eur Polym J 44:1654–1661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the State 863 Program in the Eleventh Five-Year Plan (No. 2007AA021809) and the Graduate degree thesis Innovation Foundation of Central South University (No.CX2009B052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyun Yang.

Additional information

M. Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, J., Liu, M., Zhang, Y. et al. Folate-decorated chitosan/doxorubicin poly(butyl)cyanoacrylate nanoparticles for tumor-targeted drug delivery. J Nanopart Res 14, 761 (2012). https://doi.org/10.1007/s11051-012-0761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0761-4

Keywords

Navigation