Skip to main content
Log in

Monofunctional gold nanoparticles: synthesis and applications

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The ability to control the assembly of nanoparticle building blocks is critically important for the development of new materials and devices. The properties and functions of nanomaterials are not only dependent on the size and properties of individual particles, but also the interparticle distance and interactions. In order to control the structures of nanoassemblies, it is important to first achieve a precise control on the chemical functionality of nanoparticle building blocks. This review discusses three methods that have been reported recently for the preparation of monofunctional gold nanoparticles, i.e., nanoparticles with a single chemical functional group attached to each particle. The advantages and disadvantages of the three methods are discussed and compared. With a single functional group attached to the surface, one can treat such nanoparticles as molecular building blocks to react with other molecules or nanoparticles. In other words, by using appropriate chemical reactions, nanoparticles can be linked together into nanoassemblies and materials by covalent bonds, similar to the total chemical synthesis of complicated organic compounds from smaller molecular units. An example of using this approach for the synthesis of nanoparticle/polymer hybrid materials with optical limiting properties is presented. Other potential applications and advantages of covalent bond-based nanoarchitectures vs. non-covalent interaction-based supramolecular self-assemblies are also discussed briefly in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atay T., Song J-H., Nurmikko A.V. (2004) Strongly interacting plasmon nanoparticle pairs: From dipole–dipole interaction to conductively coupled regime. Nano Lett. 4:1627–1731

    Article  CAS  Google Scholar 

  • Brown L.O., Hutchison J.E. (1997) Convenient preparation of stable, narrow-dispersity, gold nanocrystals by ligand exchange reactions. J. Am. Chem. Soc. 119:12384–12385

    Article  CAS  Google Scholar 

  • Brust M., M. Walker, D. Bethell, D.J. Schiffrin & R. Whyman, 1994. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Comm. 801–802

  • Cao Y., Jin R., Mirkin C.A. (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  • Chen Y., J. Aveyard & R. Wilson, 2004. Gold and silver nanoparticles functionalized with known numbers of oligonucleotides per particle for DNA detection. Chem. Comm. 2804–2805

  • Dai Q., Worden J.G., Trullinger J., Huo Q. (2005) A “nanonecklace” synthesized from monofunctionalized gold nanoparticles. J. Am. Chem. Soc. 127: 8008–8009

    Article  CAS  Google Scholar 

  • Daniel M.-C., Astruc D. (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346

    Article  CAS  Google Scholar 

  • Doering W.E., Nie S. (2002) Single-molecule and single particle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106:311–317

    Article  CAS  Google Scholar 

  • Feldheim D.L., Keating C.D. (1998) Self-assembly of single electron transistors and related devices. Chem. Soc. Rev. 27:1

    Article  CAS  Google Scholar 

  • Hainfeld J.F., Powell R.D. (2000) New frontiers in gold labeling. J. Histochem. Cytochem. 48:471–480

    CAS  Google Scholar 

  • Hao E., Schatz G. (2004) Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120:357–366

    Article  CAS  Google Scholar 

  • Hostetler M.J., Wingate J.E., Zhong C.-J., Harris J.E., Vachet R.W., Clark M.R., Londono J.D., Green S.J., Stokes J.J., Wignall G.D., Glish G.L., Porter M.D., Evans N.D., Murray R.W. (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size. Langmuir 14:17–30

    Article  CAS  Google Scholar 

  • Hostetler M.J., Templeton A.C., Murray R.W. (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789

    Article  CAS  Google Scholar 

  • Kneipp K., H. Kneipp & J. Kneipp, 2006. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39, 443–450

    Google Scholar 

  • Mann S., Shenton W., Li M., Connolly S., Fitzmaurice D. (2000) Biologically programmed nanoparticle assembly. Adv. Mater. 12:147–150

    Article  CAS  Google Scholar 

  • Mirkin C.A., Lesinger R.L., Mucic R.C., Storhoff J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  Google Scholar 

  • Michaels A.M., Jiang J., Brus L. (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B 104:11965–11971

    Article  CAS  Google Scholar 

  • Nalwa H.S. ed. (2002) Nanostructured Materials and Nanotechnology. Academic Press, London

    Google Scholar 

  • Nam J., Thaxton C.S., Mirkin C.A. (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  • Nicholas K. (2005) Nanoparticle Assemblies and Superstructures. CRC Press, Boca Rotan, FL

    Google Scholar 

  • Nicolaou K.C., 1996. Classics in Total Synthesis: Targets, Strategies, Methods. Wiley-VCH, New York

  • Nie S., Emory S.R. (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  • Nordlander P., Oubre C., Prodan E., Li K., Stockman M.I. (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett. 4:899–903

    Article  CAS  Google Scholar 

  • Ohara P.C., Heath J.R., Gelbart W.M. (1997) Self-assembly of submicronmeter rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. 36:1078–1080

    Article  CAS  Google Scholar 

  • Philip R., Kumar G.R., Sandhyarani N., Pradeep T. (2002) Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver nanoclusters. Phys. Rev. B 62:13160–13166

    Article  CAS  Google Scholar 

  • Schmid G., Baumle M., Geerkens M., Heim I., Osemann C., Sawitowski T. (1999) Current and future applications of nanoclusters. Chem. Soc. Rev. 28:179–185

    Article  CAS  Google Scholar 

  • Shaffer A., Worden J.G., Huo Q. (2004) Comparison study of solution phase versus solid phase place exchange reaction in controlled functionalization of gold nanoparticles. Langmuir 20:8343–8351

    Article  CAS  Google Scholar 

  • Shenhar R., Rotello V.M. (2003) Nanoparticles: scaffolds and building blocks. Acc. Chem. Res. 36:549–561

    Article  CAS  Google Scholar 

  • Shenhar R., T.B. Norsten & V.M. Rotello, 2005. Polymer-mediated nanoparticle assembly: Structural control and applications. Adv. Mater. 17, 657–669

    Google Scholar 

  • Sönnichsen C., Reinhard B.M., Liphardt J., Alivisatos A.P. (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23:741–745

    Article  Google Scholar 

  • Soon K.-M., Mosley D.W., Peelle B.R., Zhang S., Jacobson J.M. (2004) Synthesis of monofunctionalized gold nanoparticles by Fmoc solid-phase reactions. J. Am. Chem. Soc. 126:5064–5065

    Article  Google Scholar 

  • Storhoff J.J., Mirkin C.A. (1999) Programmed materials synthesis with DNA. Chem. Rev. 99:1849–1862

    Article  CAS  Google Scholar 

  • Sun W., Dai Q., Worden J.G., Huo Q. (2005) Optical limiting of a covalently bonded gold nanoparticle/polylysine hybrid material. J. Phys. Chem. B 109:20854–20857

    Article  CAS  Google Scholar 

  • Talley C.E., Jackson J.B., Oubre C., Grady N.K., Hollars C.W., Lane S.M., Huser T.R., Nordlander P., Halas N.J. (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5:1569–1574

    Article  CAS  Google Scholar 

  • Tang Z., Kotov N.A. (2005) One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17:951–962

    Article  CAS  Google Scholar 

  • Tripp S.L., Pusztay S.V., Ribbe A.E., Wei A. (2002) Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc. 124:7914–7915

    Article  CAS  Google Scholar 

  • Wang Z., Pan S., Kraus T.D., Du H., Rothberg L.J. (2003) The structural basis for giant enhancement enabling single-molecule Raman scattering. Proc. Natl. Acad. Sci. 100:8638–8643

    Article  CAS  Google Scholar 

  • Wilson R., Y. Chen & J. Aveyard, 2004. One molecule per particle method for functionalising nanoparticles. Chem. Comm. 1156–1157

  • Worden J.G., A.W. Shaffer & Q. Huo, 2004a. Controlled functionalization of gold nanoparticles through a solid phase synthesis approach. Chem. Comm. 518–519

  • Worden J.G., Dai Q., Shaffer A., Huo Q. (2004b) Monofunctional group-modified gold nanoparticles from solid phase synthesis approach: Solid support and experimental condition effect. Chem. Mater. 16:3746–3755

    Article  CAS  Google Scholar 

  • Worden J.G., Q. Dai & Q. Huo, 2006. Nanoparticles-dendrimer conjugate prepared from a one-step chemical coupling of monofunctional nanoparticles with a dendrimer. Chem. Comm. 1536–1538

Download references

Acknowledgements

This work was financially supported by the National Science Foundation CAREER Award DMR 0239424 and 0552295, and Nanoscale Interdisciplinary Research Team award DMI 0506531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Huo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huo, Q., Worden, J.G. Monofunctional gold nanoparticles: synthesis and applications. J Nanopart Res 9, 1013–1025 (2007). https://doi.org/10.1007/s11051-006-9170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9170-x

Key words

Navigation