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Abstract 

Several techniques have been proposed to extend the particle swarm 
optimization (PSO) paradigm so that multiple optima can be located and 
maintained within a convoluted search space. A significant number of these 
implementations are subswarm-based, that is, portions of the swarm are 
optimized separately. Niches are formed to contain these subswarms, a 
process that often requires user-specified parameters. The vector-based 
PSO uses a novel approach to locate and maintain niches by using 
additional vector operations to determine niche boundaries. As the standard 
PSO uses weighted vector combinations to update particle positions and 
velocities, the proposed technique builds upon existing knowledge of the 
particle swarm. Once niche boundaries are calculated, the swarm can be 
organized into subswarms without prior knowledge of the number of 
niches and their corresponding niche radii. 

This paper presents the vector-based PSO with emphasis on its 
underlying principles. Results for a number of functions with different 
characteristics are reported and discussed. The performance of the 
vector-based PSO is also compared to two other niching techniques for 
particle swarm optimization. 

1    Introduction 

Swarm intelligence algorithms such as Particle Swarm Optimization 
(PSO) have been proved to be effective and robust for difficult 
optimization problems where the more traditional optimization methods 
would not succeed [6] [9] [22] [23]. PSO was specifically designed to face 
the challenge of optimizing problems described by convoluted problem 
landscapes, often characterized by many sub-optimal or near-optimal 
solutions. The two-fold nature of the PSO algorithm that balances a social 
and a cognitive component facilitates both the exploitation of regions with 
higher fitness, as well as the exploration of the entire problem space. In 
both these aspects the velocity term, which is also a unique PSO feature, 
plays a significant role [13]. The concept of velocity is part of the 
metaphor of a swarm of particles flying through and exploring 
hyperdimensional space. Particles move towards the target and overshoot 
it, but being pulled back by previous successes, oscillate around the target 
before eventually converging on the best solution [16] [26]. If, in 
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the process of exploration, better fitness is encountered, the direction of the
entire swarm changes and it is pulled away from a suboptimal solution.

If a problem is such that the locations of multiple optima are required,
it is expected that different regions of the search space, known as niches,
should be optimized in order to locate the different optima. Therefore, al-
gorithms must be designed that counteract the effect of one of the essential
characteristics of the particle swarm, namely redirecting the swarm away
from a suboptimal solution to a better solution. Different strategies have
been devised to neutralize this effect and maintain an optimal solution once
it has been located, for example, by modification of the objective function
[17] [18], using the cognition-only PSO at certain stages of the algorithm [4]
[5], and setting a niche radius to contain particles in a niche [1] [14]. Al-
gorithms implementing these strategies, are known as niching or speciation
algorithms.

The remainder of this paper is organized as follows: Section 2 gives
an overview of niching algorithms, while section 3 discusses the underlying
principles of the vector-based niching approach and describes the vector-
based PSO. Section 4 reports and discusses experimental results. Section
5 presents a comparative study of three niching algorithms, while section 6
concludes the paper.

2 PSO niching algorithms

The idea of optimizing portions of a swarm separately has been implemented
in a variety of PSO algorithms, mainly to improve diversity [6] [10] [11] [12].
Topological neighbourhoods are formed in different ways by selecting par-
ticles using their indices. The particles constituting such a subswarm are
distributed throughout the search space. Most of these neighbourhoods
or subswarms will eventually converge, but premature convergence is pre-
vented, ensuring a better chance to locate a good solution.

The notions of subswarms and neighbourhoods form a natural starting
point when designing niching algorithms. For such strategies neighbour-
hoods are spatial, not topological. A neighbourhood can be conceptualized
as the region in search space where the problem landscape is such that each
particle has a natural tendency to move towards an optimum or neighbour-
hood best. The particles in such a region constitutes a subswarm.

A number of niching algorithms is described below. Not all use the idea
of neighbourhoods explicitly, but in each case a strategy is implemented to
optimize candidate solutions separately.
Objective function stretching: A function stretching technique proposed
by Parsopoulos et al was originally devised to overcome the problem of occa-
sional convergence to local optima [17]. Parsopoulos and Vrahatis [18] also
used this principle to locate all the local minima of a function sequentially.
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The objective function is modified to prevent the PSO from returning to a
previously discovered minimum. All local minima above the current mini-
mum are eliminated. Each time a minimum is discovered, the function is
modified and the swarm re-initialized. However, the stretching technique
introduces false local minima as well as misleading gradients [24].
nBest PSO: Brits et al developed a particle swarm optimization algorithm,
the nbest PSO, to solve systems of unconstrained equations [3]. Systems
with multiple solutions require the implementation of a niching strategy,
and the standard gbest algorithm is adapted to locate multiple solutions
in one run of the algorithm. For a system with two variables x and y,
each particle represents a set of candidate values for x and y. The fitness
function is formulated to indicate the distance between curves described by
the equations, which is minimized to find a solution.
NichePSO: This strategy, developed by Brits et al [4] [5], creates sub-
swarms from particles representing candidate solutions and each particle’s
closest topological neighbour. Candidate solutions are identified by monitor-
ing the fitness of a particle over a number of iterations, selecting those where
the fitness changes very little. These initial subswarms absorb particles from
the main swarm (the remaining particles after subswarms have been formed)
or merge with other subswarms while being optimized in parallel, until the
main swarm contains no more particles. Main swarm particles are updated
using the cognitive-only PSO, while subswarms are updated separately, us-
ing the Guaranteed Convergence Particle Swarm Optimization (GCPSO)
algorithm [25].
The Speciation-Based PSO: The speciation-based PSO (SPSO) of Bird
and Li [1] and Li [14], is an elegant niching approach where particles are first
sorted according to their fitnesses. Niches are then formed, starting with
the fittest particle, by incorporating all particles within a previously set
niche radius in the subswarm that is formed in the niche. The process is
repeated until no more particles remain. Particles are updated once, using
their respective neighbourhood best positions. The entire process is repeated
until stopping conditions are met. Disadvantages of such an approach is the
need to set a niche radius in advance. Even if an optimal value for the niche
radius is estimated, performance will degrade for function landscapes with
different niche sizes.
The adaptive niching PSO: Bird and Li [1] proposed the adaptive niching
PSO (ANPSO) that removes the need to specify the niche radius in advance.
The average distance between each particle and its closest neighbour is cal-
culated and organized in an undirected graph. At each iteration, an edge
is added to the graph between every pair of particles that have been closer
than the average distance to one another during the last 2 steps. Niches
are formed from these connected subgraphs while all unconnected particles
remain outside any niches. Thus the neighbourhood topology is redefined
at every step. Particles are updated in each niche, while those outside any
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niche will continue searching the whole problem space. The algorithm per-
formed well on a number of benchmark functions but is computationally
expensive, owing to the calculation of distances between particles.
The Fitness Euclidian-distance ration PSO: Li [15] proposed a mul-
timodal particle swarm optimizer based on fitness Euclidian-distance ratio
(FER-PSO) to remove the need for niching parameters. The FER-PSO uses
a memory-swarm that contains all personal bests, in order to keep track of
the multiple better points found so far. Each of these points are further im-
proved by moving toward its “fittest and closest” neighbours, identified by
computing a particle’s FER value. The FER value is a ratio of the difference
in fitness of two particles and the Euclidian distance between them, scaled
by a factor to ensure that neither the fitness nor the distance becomes too
dominant. The effect of such a strategy is that particles would form niches
naturally around multiple optima, given that there are sufficient numbers of
particles.
The Waves of Swarm Particles algorithm: The Waves of Swarm Parti-
cles (WoSP) algorithm, developed by Hendtlass [7], uses a technique to alter
the behaviour of PSO so that further aggressive exploration is achieved after
each optimum has been explored. A short-range force (SRF) is introduced
that produces a force of attraction between particles that is inversely pro-
portional to the distance between them. As particles approach each other,
their velocity increases significantly. Some particles may pass each other and
move apart until the short-term attraction is too weak to bring them back
together. Particles will not be pulled back, but continue moving rapidly
apart, exploring beyond their previous positions. Instead of converging on a
single optimum, some of the neighbourhood will be ejected with significant
velocities, thus exploring other regions of the search space. Such particles
are organized in a wave, and particles assigned to the wave are attracted
to the best particle in the wave. The wave converges on another optimum,
starting the process again until all or most of the optima are located.

3 The vector-based PSO

The vector-based PSO, developed by Schoeman and Engelbrecht [19] [20]
[21], comprises a novel approach to niching where, instead of suppressing cer-
tain characteristics of the particle swarm optimization paradigm, the power
of the concepts underlying the original PSO is harnessed to induce nich-
ing. In addition, the strategy has the ability to locate and optimize multiple
optima with minimal prior knowledge of the landscape of the objective func-
tion. The number of control parameters is minimal, while care is taken to
retain a robust and accurate algorithm that will yield good performances
for a variety of problem landscapes.

Three versions of the vector-based PSO were developed, all using the
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same strategy to identify niches and calculate niche radii, but differing in
the optimization phase. The sequential vector-based PSO [19] locates a
niche and optimizes the subswarm occupying it sequentially. Duplicate so-
lutions are found, which makes the approach clumsy, especially as the di-
mensionality increases. The parallel vector-based PSO [20] identifies niches
sequentially, but optimizes them in parallel, merging niches that converge on
the same optimum in the process. The enhanced parallel vector-based PSO
[21] incorporates an additional strategy to prevent particles from leaving a
niche, preventing possible redirection of the swarm and loss of optimal solu-
tions. In this article the enhanced parallel vector-based PSO, now referred
to as the vector-based PSO is presented, as it represents the culmination of
the strategy.

3.1 Using vector properties

Vectors are used extensively in PSO algorithms. Concepts such as the ten-
dency to move towards the personal best as well as the global best are
implemented using vectors, as is the concept of a velocity associated with a
particle. These vectors are manipulated to locate a new position. If these
vectors could also be manipulated to facilitate niching, the resulting strategy
would be elegant as well as powerful.

During optimization of a swarm of particles, the velocity vector associ-
ated with a particle is updated as follows:

vi,j = wvi,j + c1r1,j(yi,j − xi,j) + c2r2,j(ŷj − xi,j) (1)

where w is the inertia weight [22] , c1 and c2 two positive acceleration con-
stants and r1,j and r2,j random values between 0 and 1.

In the updating equation, vector addition is used to add weighted po-
sition vectors towards a particle’s personal best position and towards the
best position found so far in the entire neighbourhood. The resulting vector
is added to the previous velocity weighted by w. The new velocity is used
to compute a new particle position. In the following paragraphs a strat-
egy is explained that uses vector properties and operations to locate niche
boundaries.

Consider the inverted one-dimensional Rastrigin function:

F (x) = −(x2 − 10 cos(2πx) + 10) (2)

where x ∈ [−1.5, 1.5]. Figure 1 illustrates the function with three optima in
this range. Let the initial best position be at x = 0. The neighbourhood
comprises the entire search space, therefore this position is known as ŷ or
gbest. Assume that a number of particles are distributed along the x-axis.
Each particle has an associated personal best position (yi or pbest) where the
fitness will be better than at the original particle position. Positions of two
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Figure 1: The inverted one-dimensional Rastrigin function, showing particles
with associated vectors

particles are shown with vectors pointing in the direction of the personal best
position as well as towards the global best position. If a particle is in a region
where particles are expected to converge on the current neighbourhood best
position, vectors towards the particle’s personal best position as well as the
neighbourhood best position point in the same direction. If the vectors
point in opposite directions, it means that the position of the particle is in
a region where it is not expected to converge on the current neighbourhood
best position.

When identifying niches, this knowledge can be used to identify particles
that are not in the niche surrounding the current neighbourhood best posi-
tion. Not all particles where both vectors point in the same direction will,
of course, move towards the neighbourhood best position, as there may be
other optimal solutions between those particles and the current neighbour-
hood best.

To illustrate vectors in a two-dimensional search space, Figure 2 shows
a contour map of the two-dimensional Ursem F1 function:

F (x1, x2) = −(sin(2x1 − 0.5π) + 3cos(x2) + 0.5x1) (3)

Two particles, P1 and P2, are depicted with their associated vectors vp

and vg where gbest is a position at or near to the global optimum of the
function.

During optimization, vector addition of the position vectors towards a
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Figure 2: Contour map of the two-dimensional Ursem F1 function

particle’s personal best and current neighbourhood best positions is used
to update the velocity vector. These vectors are implemented as arrays of
values of which the size corresponds to the dimensionality of the problem. In
the vector-based PSO, the niching strategy uses another vector operation,
the dot product. The dot product of a and b is computed as follows:

a · b = a1b1 + a2b2 + a3b3 (4)

The angle between two nonzero vectors a and b is defined to be the
angle θ where θ ∈ [0, π]. The relationship between the dot product and the
angle between two vectors is described by:

a · b = ‖a‖‖b‖ cos θ (5)

The value of cos θ is positive in the first quadrant θ ∈ [0, π/2] and nega-
tive in the second quadrant θ ∈ [π/2, π]. Therefore the dot product of two
vectors is positive if they point roughly in the same direction, that is, with
an angle of less than 90◦ between them. The dot product is negative when
the vectors point roughly in opposite directions, that is, with an angle be-
tween 90◦ and 180◦ between them. For one-dimensional functions, the angle
is either 0◦ or 180◦.

These observations illustrate that a position in the search space can be
calculated that roughly indicates the boundary between two niches, using
the existing vectors vp and vg. The position where the dot product changes
from positive to negative indicates the approximate niche boundary.
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3.2 Identifying niches

Two steps are needed to locate multiple optimal solutions. Firstly, candidate
solutions are identified and portions of the search space - called a niche -
where an optimal solution may be found are demarcated. Secondly, each
subswarm is optimized while particles are contained in the niche.

The vector-based PSO uses the vector dot-product to compute the dis-
tance from each neighbourhood best to the boundary of that niche, known
as the niche radius. A number of niching algorithms use the concept of
a niche radius, although niche boundaries can, at best, be approximated.
Handled with care, a niche radius indicates an approximate region contain-
ing particles belonging to the niche. The vector-based PSO identifies niches
sequentially and calculates a niche radius for each candidate solution.

Algorithm 1 presents a pseudo-code description of the process. Some
aspects of the algorithm are discussed in detail below:

Algorithm 1 Process to identify niches

begin
Initialize the swarm by creating N particles;
Set niche identification number (niche-id)of each particle to 0 ;
for each particle do

Create a random position within a small radius ε;
The position with the best fitness is the personal best yi(t);
The other position is xi(t) ;
Calculate the vector vpi, where

vpi(t) = yi(t)− xi(t)
end
repeat

Set ŷ(t) to yi(t) with best fitness of particles where niche-id = 0;
for each particle in the swarm do

Calculate the vector vgi where
vgi(t) = ŷ(t)− xi(t)

Calculate the dot product δi:
δi = vpi · vgi

Set radius ρi to the distance between ŷ(t) and xi(t)
end
Set niche radius to distance between ŷ(t) and nearest particle
with δi < 0;
for each particle where ρi < nicheradius and δi > 0 do

Set niche-id to next number;
end

until no particles with niche-id = 0 remain;
if particles in niche < 3 then

Create extra particles in niche so that it has at least 3 particles;
end

end
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Initialize the swarm: A specified number of particles is created at random
positions throughout the search space. To locate all the optima in the search
space, it is essential that particles are distributed uniformly throughout the
search space. In this study results are presented using Sobol sequences, one
of the most popular quasi-random or low-discrepancy sequences [2], [8], to
calculates initial particle positions.

During initialization, the personal best position of each particle is calcu-
lated. A random position is created in the vicinity of the particle position.
A parameter, ε, a small value relative to the search space, acts as an up-
per bound to the distance between the particle position and its personal
best position. The position with the best fitness becomes the personal best
position and vice versa.
Identify niches: The particle with the best fitness of its personal best po-
sition is identified as the first neighbourhood best, ŷ(t). For every particle
in the entire swarm, the position vector from the particle’s position to the
current neighbourhood best position, vgi, is calculated, as well as the dot
product, δi, of the vectors vgi and vpi. The niche radius is set to the Eu-
clidian distance between the current neighbourhood best position and the
position of the nearest particle with a negative dot product. Particles with
positive dot products and radii smaller than the niche radius constitute a
subswarm that can be optimized separately. The process is repeated until
all particles have been incorporated in subswarms.
False niches: The shape of a niche in an unknown function landscape
can not be assumed to be symmetrical around a position identified as the
current neighbourhood best. In addition, an initial candidate solution will
not be situated at the center of such a niche. Thus the niche radius only
gives a rough estimate of the boundary of the niche. However, a number
of particles belonging to the niche, may still be situated outside the niche
radius, especially if the niche has an irregular shape. In such cases extra or
false niches form next to the niche where the true optimum will eventually be
located; the particle identified as its neighbourhood best being the particle
nearest to that niche.
Extending subswarms: Some of the subswarms formed when niches are
identified may contain very few particles. Often only one particle consti-
tutes a subswarm with ŷ(t) equal to yi(t). Such a particle easily becomes
stationary and will not converge, or converge very slowly to the nearest
optimal solution. False niches are especially prone to such conditions. To
prevent subswarms from becoming stationary, more particles are added to
these niches. The VBPSO extends subswarms to contain at least 3 particles,
a number arrived at through careful empirical observations.
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3.3 Optimizing and merging subswarms

Once all niches have been identified, subswarms contained in the niches are
optimized in parallel. Niches are merged if the distance between two can-
didate solutions becomes less than a specific problem-dependent threshold
value, referred to as the granularity (g). The merging procedure is invoked at
specific intervals during the optimization process. Particles are absorbed by
the niche with the fittest neighbourhood best. To prevent too many niches
merging, particles are not absorbed at the same time; the neighbourhood
best being the last to be absorbed. The merging procedure is formalized in
algorithm 2.

Algorithm 2 The merging procedure

begin
for each niche do

for all other niches do
Calculate Euclidian distance between ŷ(t) of two niches;
If distance < granularity for all particles in subswarm with
worst ŷ(t) fitness do

Calculate Euclidian distance to ŷ(t) of other niche;
if distance < granularity and particle 6= ŷ(t) then

Set niche-id of particle to that of niche with best
fitness;
Update number of particles in both niches;

end
if one particle ŷ(t) remains and distance < g then

Set niche-id of particle to that of niche with best
fitness;
Update number of particles in both niches;

end
end

end
end

end

Experiments have shown that the vector-based PSO locates optima suc-
cessfully for a range of granularity values, where the upper bound for such
values is the smallest interniche distance in the problem landscape.

During optimization, particles have to be contained in the niche. A
particle may move outside the niche, encounter better fitness and redirect the
entire subswarm to a neighbouring niche. A strategy has been introduced to
counteract this effect. During updating of particle positions, each potential
new position is investigated to determine whether the new position is still
inside the niche. A particle position is only updated if the vector dot-product
remains positive.
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Algorithm 3 presents a pseudo-code description of the complete vector-
based PSO algorithm. The updating process is repeated for a specified
number of times, interspersed with the merging procedure that is called
after a set number of iterations.

Algorithm 3 The vector-based PSO

begin
Initialize the swarm by creating N particles;
Set (niche-id) of each particle to 0 and initialize granularity g ;
Identify niches and calculate niche radii;
Extend each subswarm to contain at least 3 particles;
for m times do

for k times do
for each particle do

Create temporary particle xtemp(t) and personal best
ytemp(t) ;
Calculate vectors vptemp, vgtemp and dot product δtemp ;
if δtemp < 0 then

Retain original particle position and corresponding
values;

end
else

Particle position xi(t) = xtemp(t);
Update yi(t), ŷ(t) and vectors vpi and vgi;
Update dot product δi and radius ρi;

end
end

end
Merge niches;

end
end

4 Experimental results

The performance of the vector-based PSO was tested extensively on a num-
ber of functions. Seven two-dimensional functions with a variety of land-
scapes were chosen to assess the ability of the vector-based PSO to locate
optima with differing shapes, sizes and spacing. Short descriptions of each
function are listed. Figures 3 to 9 illustrate the function landscapes of the
functions for the search space where they have been tested, as well as in a
larger space when applicable.
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The modified Himmelblau function:

F (x1, x2) = 200− (x2
1 + x2 − 11)2 − (x1 + x2

2 − 7)2 (6)

The Himmelblau function, defined in two dimensions, has four well-defined
optima with similar fitnesses. The function was tested in the range x1, x2 ∈
[−6, 6], where the optima occur.

The Rastrigin function:

F (x) = −

(
n∑

i=1

[
x2

i − 10 cos(2πxi) + 10
])

(7)

The function has a global optimum at [0, 0]n where n indicates the number
of dimensions, as well as an infinite number of optima radiating out from
the global optimum. The Rastrigin function was tested in the range x1, x2 ∈
[−1.25, 1.25], where the two-dimensional version has 9 optima.

The Griewank function:

F (x) = −

((
1

4000

n∑
i=1

x2
i

)
−

(
n∏

i=1

cos(
xi√

i
)

)
+ 1

)
(8)

The Griewank function also has one global optimum at [0, 0]n, and an infinite
number of optima of which the fitness decrease, depending on the distance
from the global optimum. The Griewank function was tested in the range
x1, x2 ∈ [−5.0, 5.0] where the function has 5 optima.

The Ackley function:

F (x1, x2) = 20 + e− 20.e
−0.2

√
x2
1+x2

2
2 − e

cos(2πx1)+cos(2πx2)
2 (9)

The function has an infinite number of optima surrounding a central global
optimum. Fitnesses of the surrounding optima decrease sharply. The func-
tion was tested in the range x1, x2 ∈ [−1.6, 1.6] where 9 optima occur.

The Ursem F1 function:

F (x1, x2) = −(sin(2x1 − 0.5π) + 3cos(x2) + 0.5x1) (10)

The function has a repetitive character but no central optimum. Well-
defined optima occur indefinitely. The Ursem F1 function is tested in the
range x1 ∈ [−2.5, 3.0] and x2 ∈ [−2.0, 2.0], a region containing two of the
optima.
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The Ursem F3 function:

F (x1, x2) = − (sin(2.2πx1 − 0.5x1)) ·
(

2− |x2|
2

)
·
(

3− |x1|
2

)
−

(
sin(0.5πx2

2 + 0.5π)
)
·
(

2− |x2|
2

)
·
(

2− |x1|
2

)
(11)

The landscape of the function contains a number of flattened peaks. Groups
of four peaks are repeated at specific intervals. The algorithms are tested
with one such group in the range x1, x2 ∈ [−2.0, 2.0].

The Six Hump Camel function:

F (x1, x2) =
(

4− 2.1x2
1 +

x4
1

3

)
x2

1 + x1x2 + (−4 + 4x2
2)x

2
2 (12)

The Six Hump Camel function is defined in two dimensions and is not repet-
itive. The range x1 ∈ [1.1, 1.1] and x2 ∈ [−1.9, 1.9] contains the six optima
and the function is tested in this region.

4.1 Experimental procedure

A number of additional settings is required:

Number of initial particles: Initial swarm sizes are chosen arbitrarily,
taking into account the dimensions of the search space, the dimensionality
and the expected number of solutions. Particle positions are calculated using
Sobol sequences [2] [8]. The number of particles chosen for each function is
listed in table 1.
The granularity: Taking into account the dimensions of the search space,
granularity values for each function are chosen, and listed in table 1.

Figure 3: The Himmelblau function showing maxima.
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(a) (b)

Figure 4: The Rastrigin function.

(a) (b)

Figure 5: The Griewank function.

(a) (b)

Figure 6: The Ackley function.
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(a) (b)

Figure 7: The Ursem F1 function.

(a) (b)

Figure 8: The Ursem F3 function.

Figure 9: The six hump camel function.
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Number of runs: For all functions, the algorithm is run 30 times and
averages of the outcomes calculated.
Number of iterations: During the optimization phase, 500 iterations of
the updating procedure take place. Niches are merged at intervals of 50 iter-
ations, giving rise to larger subswarms. The intervals are chosen arbitrarily
and no evidence could be found that it has any effect on performance.
Number of function evaluations: For each function the average number
of function evaluations over 30 runs is reported. Due to the extension of
small subswarms, the number of function evaluations differ for each run.

4.2 Results

Results of testing the vector-based PSO algorithm with seven two-dimensional
functions are reported in table 1. Some aspects of the reported results are
clarified in the following description:
Average number of solutions: The number of optima located during
each run of the algorithm is averaged over 30 runs.
Average derivatives: Deviations from the optimal positions are obtained
by calculating partial derivatives f ′(x1) and f ′(x2). of the functions. Aver-
ages of the derivatives over 30 runs are reported.
Success rate: The success rate is the total number of optima located over
30 runs as a percentage of the total number of possible optima.
Standard deviation: The standard deviation, placed in parentheses below
each average, was calculated for all results.

4.3 Discussion

The results reported in table 1 show that the vector-based PSO performed
well on a number of two-dimensional functions with varying function land-
scapes. The average success rate for all seven functions is 99.71% , and the
success rate for individual functions are above 99% in all cases.

Function landscapes of the Ackley, Ursem F3 and Six hump camel func-
tions show asymmetrical niche shapes and heights that may differ consid-
erably, but results are still good. Therefore it can be concluded that the
vector-based PSO is a robust niching algorithm that performs well even in
adverse circumstances.
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5 Scalability of the vector-based PSO

A study of a niching algorithm would not be complete without investigating
its ability to scale to massively multi-modal domains. Of the functions
tested thus far, the Griewank and Rastrigin functions can be singled out as
suitable for testing scalability. In addition, the absolute Sine function is a
good choice as it easy to visualize its representation in several dimensions.

(a) (b)

Figure 10: The absolute Sine function in one and two dimensions

5.1 Experimental procedure

This section presents empirical results obtained when testing the vector-
based PSO algorithm on three multimodal functions; the absolute Sine
function and the Rastrigin function for 1 to 4 dimensions and the Griewank
function for 1 to 3 dimensions. Function landscapes of the two-dimensional
Rastrigin and Griewank functions are illustrated in Figures 4 and 5. The
absolute Sine function was investigated in the range [0, 2π]n where 1 ≤ n ≤ 4
and is illustrated for one and two dimensions in Figure 10. For each function
the algorithm is run 30 times for each of the dimensions. In all cases Sobol
sequences are used to compute the initial particle positions.

5.2 Results

Table 2 presents the results obtained for the three functions as described
above. For each function in every one of the dimensions, the total number
of optima, swarm size used, average number of evaluations over 30 runs and
the success rate are reported.

5.3 Discussion

Results show that the vector-based PSO performs well when scaled to higher
dimensions, even if swarm sizes are not increased exponentially for higher
dimensions.
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6 A comparative study of three niching algorithms

Various niching methods for particle swarm optimization have been de-
scribed in section 2. This section compares the performance of two of those
methods, the species-based PSO and NichePSO, to that of the vector-based
particle swarm optimizer. In all three niching methods optimization of sub-
swarms takes place in parallel, but the manner in which niches form, differs
as explained in section 2.

6.1 Experimental procedure

Comparison of different algorithms requires similar experimental setups.
The species-based PSO and NichePSO algorithms are tested on the same
seven two-dimensional functions as the vector-based PSO, using the same
number of particles for each function. Given that the initial distribution of
particles throughout the problem space can influence the performance of an
algorithm considerably, both the species-based PSO and the vector-based
PSO were implemented using Sobol sequences as a random number genera-
tor. NichePSO uses Faure sequences, that also yields an even distribution.
The number of iterations was also set to 500 for each algorithm. Average
results of 30 runs were calculated for each algorithm.

The species-based PSO requires a niche radius set in advance. Each
function was tested with a small range of niche radii. Results using the radius
yielding the best outcomes are reported. NichePSO was tested using the
CILib framework developed by the CIRG research group at the department
of Computer Science, University of Pretoria (http://cilib.sourceforge.net).
NichePSO requires a merging parameter, µ. For each function, µ was set to
the granularity used in the vector-based algorithm, but it was normalized
as required by NichePSO.

6.2 Results

Results are reported in table 3. The success rate of each algorithm for each
function is reported. In order to compare the algorithms, results of the
vector-based PSO are repeated in the table. The granularity, niche radius
or merging parameter is listed for every function, as well as the number of
particles.
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6.3 Discussion

All three niching methods that were tested use some strategy to form sub-
swarms which are then optimized in parallel. However, the methods use
different strategies to form and maintain the subswarms before and while
optimization takes place.

The species-based PSO performed well on the Himmelblau, Griewank
and Rastrigin functions with a success rate of more than 90%. Each of
these functions has a number of well-defined optima where the heights and
interniche distances differ very little or not at all. Given the right choice
of a niche radius, a good performance of such a simple, elegant and effec-
tive algorithm can be expected. However, when the search space is more
convoluted and the shapes, sizes and placing of optima in the search space
are less symmetrical, the niche radii differ from optimum to optimum, and
the performance degrades. These expectations are confirmed by the results
where the success rate of the Ursem F1 function is 86.6667%, the Ursem F3
function 73.3333% and the six hump camel function 63.8889%.

NichePSO gives good performances on a number of the functions: Him-
melblau, Griewank, Ackley and Ursem F1 all have success rates of more
than 90%. However, the Rastrigin function only has a 80% success rate
in this implementation; an unexpected result given the results obtained by
the original implementation where the success rate was 100% for a region
where 9 optima occurred. The indication is that too many niches merge
and that the algorithm needs some fine tuning of parameters to prevent
these occurrences. Such fine tuning has not yet been incorporated into the
NichePSO implementation in the CILib framework. In the Ursem F3 and
six hump camel functions where the niche sizes differ considerably, the per-
formance degrades to success rates of 35.8333% and 33.3333%. For the six
hump camel function only the two large niches were located in all cases.
Therefore, too many niches merge if niche sizes differ considerably. While
NichePSO manipulates subswarms in ingenious ways, the merging process
is not robust enough if the objective functions become more convoluted.

For the small subset of functions that has been tested in this study, all
three algorithms performed equally well on functions where the landscapes
are relatively symmetrical. However, the vector-based PSO outperformed
the other two algorithms in functions where the differences between the in-
terniche distances, the fitnesses and niche radii of the various optima become
more marked.

7 Conclusion

The concept of niching was discussed and a number of PSO niching tech-
niques described. The development of the vector-based particle swarm op-
timizer (VBPSO) for niching was presented by referring to the concept on
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which it is based, as well as the implementation of the algorithm. Results ob-
tained when testing the vector-based PSO on a number of two-dimensional
functions with different characteristics were reported. These results were
compared to the performance of NichePSO and the species-based PSO on
the same functions.

To conclude, this study showed the vector-based PSO to be an effective
and robust niching algorithm. It is based on sound principles and is easy
to implement, while minimal prior knowledge of the objective functions is
required.
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