Skip to main content

Advertisement

Log in

The role of miRNA in plant–virus interaction: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant viruses affect crop production both quantitatively and qualitatively. The viral genome consists of either DNA or RNA. However, most plant viruses are positive single-strand RNA viruses. MicroRNAs are involved in gene regulation and affect development as well as host-virus interaction. They are non-coding short with 20–24 nucleotides long capable of regulating gene expression. The miRNA gene is transcribed by RNA polymerase II to form pri-miRNA which will later cleaved by Dicer-like 1 to produce pre-miRNA with the help of HYPONASTIC LEAVES1 and SERRATE which finally methylated and exported via nucleopore with the help of HASTY. The outcome of plant virus interaction depends on the effectiveness of host defense and the ability of a virus counter-defense mechanism. In plants, miRNAs are involved in the repression of gene expression through transcript cleavage. On the other hand, viruses use viral suppressors of RNA silencing (VSRs) which affect RISC assembly and subsequent mRNA degradation. Passenger strands, miRNA*, have a significant biological function in plant defense response as well as plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source [28])

Fig. 2

Source [55])

Similar content being viewed by others

References

  1. Pallas V, García JA (2011) How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 92:2691–2705

    CAS  PubMed  Google Scholar 

  2. Hull R (2009) Comparative plant virology, 2nd edn. Academic Press, Cambridge, p 393

    Google Scholar 

  3. Wang A (2015) Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol 53:45–66

    CAS  PubMed  Google Scholar 

  4. Ding S, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandahar CL (2006) Multiplication of RNA plant viruses. Springer, New York, p 353

    Google Scholar 

  6. Liu Q, Chen Y (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5

    CAS  PubMed  Google Scholar 

  7. Liu W, Meng J, Cui J, Luan Y (2017) Characterization and function of microRNA∗s in plants. Front Plant Sci 8:2200

    PubMed  PubMed Central  Google Scholar 

  8. Liu S, Zhou J, Hu C, Wei C, Zhang J (2017) MicroRNA-mediated gene silencing in plant defense and viral counter-defense. Front Microbiol 8:1801

    PubMed  PubMed Central  Google Scholar 

  9. Orang V, Safaralizadeh R, Kazemzadeh-Bavili M (2014) Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genom 2014:970607

    Google Scholar 

  10. Pérez-Quintero ÁL, Neme R, Zapata A, Lopez C (2010) Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC Plant Biol 10:138

    PubMed  PubMed Central  Google Scholar 

  11. Sunkar R, Jagadeeswaran G (2008) In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol 8:37

    PubMed  PubMed Central  Google Scholar 

  12. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    CAS  PubMed  Google Scholar 

  13. Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16:724–734

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang J, Mei J, Ren G (2019) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci 10:360

    PubMed  PubMed Central  Google Scholar 

  15. Wang J, Cui Q (2012) Specific roles of microRNAs in their interactions with environmental factors. J Nucleic Acids. https://doi.org/10.1155/2012/978384

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang Q, Qiu C, Yang J, Wu Q, Cui Q (2011) miREnvironment database: providing a bridge for microRNAs, environmental factors and phenotypes. Bioinformatics 27:3329–3330

    CAS  PubMed  Google Scholar 

  17. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    CAS  PubMed  Google Scholar 

  18. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378

    PubMed  PubMed Central  Google Scholar 

  19. Lee Y, Kim M, Han J, Yeom K, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  21. Achkar NP, Cambiagno DA, Manavella PA (2016) miRNA biogenesis: a dynamic pathway. Trends Plant Sci 21:1034–1044

    CAS  PubMed  Google Scholar 

  22. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Eamens AL, Smith NA, Curtin SJ, Wang M, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15:2219–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rogers K, Chen X (2012) microRNA biogenesis and turnover in plants. Cold Spring Harb Symp Quant Biol 77:183–194

    CAS  PubMed  Google Scholar 

  26. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35:368–376

    CAS  PubMed  Google Scholar 

  28. Dai X, Zhuang Z, Zhao PX (2010) Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform 12:115–121

    PubMed  Google Scholar 

  29. Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3:68

    PubMed  PubMed Central  Google Scholar 

  30. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    CAS  PubMed  Google Scholar 

  31. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    CAS  PubMed  Google Scholar 

  32. Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    CAS  PubMed  Google Scholar 

  34. Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25:1881–1894

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    CAS  PubMed  Google Scholar 

  36. Dykxhoorn DM (2007) MicroRNAs in viral replication and pathogenesis. DNA Cell Biol 26:239–249

    CAS  PubMed  Google Scholar 

  37. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence, and counter-counter-defence. Nat Rev Microbiol 11:745–760

    CAS  PubMed  Google Scholar 

  38. Jarošová J, Singh K, Chrpová J, Kundu JK (2020) Analysis of small RNAs of barley genotypes associated with resistance to Barley Yellow Dwarf Virus. Plants 9:60

    PubMed Central  Google Scholar 

  39. Ashraf F, Ashraf MA, Hu X, Zhang S (2020) A novel computational approach to the silencing of Sugarcane Bacilliform Guadeloupe A Virus determines potential host-derived MicroRNAs in sugarcane (Saccharum officinarum L.). Peer J 8:8359

    Google Scholar 

  40. Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhan Y (2020) Genome-wide microRNA profiling using oligonucleotide microarray reveals regulatory networks of microRNAs in Nicotiana benthamiana during Beet Necrotic Yellow Vein Virus infection. Viruses 12:310

    CAS  PubMed Central  Google Scholar 

  41. Wang H, Jiao X, Kong X, Hamera S, Wu Y, Chen X, Fang R, Yan Y (2016) A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiol 170:2365–2377

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu J, Yang R, Yang Z, Yao S, Zhao S, Wang Y, Li P, Song X, Jin L, Zhou T, Lan Y, Xie L, Zhou X, Chu C, Qi Y, Cao X, Li Y (2017) ROS accumulation and antiviral defence control by microRNA528 in rice. Nat Plants 3:16203

    CAS  PubMed  Google Scholar 

  43. Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y (2019) Transcriptional regulation of mir528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant 12:1114–1122

    CAS  PubMed  Google Scholar 

  44. Várallyay É, Válóczi A, Agyi A, Burgyán J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29:3507–3519

    PubMed  PubMed Central  Google Scholar 

  45. He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582:2445–2452

    CAS  PubMed  Google Scholar 

  46. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci 109:1790–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Akmal M, Baig MS, Khan JA (2017) Suppression of cotton leaf curl disease symptoms in Gossypium hirsutum through over expression of host-encoded miRNAs. J Biotechnol 263:21–29

    CAS  PubMed  Google Scholar 

  48. Silva TF, Romanel EA, Andrade RR, Farinelli L, Østerås M, Deluen C, Corrêa RL, Schrago CE, Vaslin MF (2011) Profile of small interfering RNAs from cotton plants infected with the polerovirus Cotton leafroll dwarf virus. BMC Mol Biol 12:40

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang C, Ding Z, Wu K, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y, Zheng L, Wei J, Du Z, Zhang A, Miao H, Li Y, Wu Z, Wu J (2016) Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant 9:1302–1314

    CAS  PubMed  Google Scholar 

  50. Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    CAS  PubMed  Google Scholar 

  51. Akhter Y, Khan JA (2018) Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus. Gene 638:60–65

    PubMed  Google Scholar 

  52. Zhang B, Li W, Zhang J, Wang L, Wu J (2019) Roles of small RNAs in Virus-Plant Interactions. Viruses 11:827

    PubMed Central  Google Scholar 

  53. Nakahara KS, Masuta M (2014) Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr Opin Plant Biol 20:88–95

    CAS  PubMed  Google Scholar 

  54. Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16:265–272

    PubMed  Google Scholar 

  55. Incarbone M, Dunoyer P (2013) RNA silencing and its suppression: novel insights from in planta analyses. Trends Plant Sci 18:382–392

    CAS  PubMed  Google Scholar 

  56. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220

    CAS  PubMed  Google Scholar 

  57. Lu Y, Gan Q, Chi X, Qin S (2008) Roles of microRNA in plant defense and virus offense interaction. Plant Cell Rep 27:1571–1579

    CAS  PubMed  Google Scholar 

  58. Ghoshal B, Sanfaçon H (2015) Symptom recovery in virus-infected plants: revisiting the role of RNA silencing mechanisms. Virology 479:167–179

    PubMed  Google Scholar 

  59. Diezma-Navas L, Pérez-González A, Artaza H, Alonso L, Caro E, Llave C, Ruiz-Ferrer V (2019) Crosstalk between epigenetic silencing and infection by tobacco rattle virus in Arabidopsis. Mol Plant Pathol 20:1439–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang C, Wang C, Xu W, Zou J, Qiu Y, Kong J, Yang Y, Zhang B, Zhu S (2018) Epigenetic changes in the regulation of Nicotiana tabacum response to Cucumber Mosaic Virus Infection and symptom recovery through single-base resolution methylomes. Viruses 10:402

    PubMed Central  Google Scholar 

  61. Qin J, Wang C, Wang L, Zhao S, Wu J (2018) Defense and counter-defense in rice-virus interactions. Phytopathol Res 1:34

    Google Scholar 

  62. Kriznik M, Baebler S, Gruden K (2020) Roles of small RNAs in the establishment of tolerant interaction between plants and viruses. Curr Opin Virol 42:25–31

    CAS  PubMed  Google Scholar 

  63. Ashish P, Namisha S, Mehanathan M, Sumi R, Manoj P (2019) Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 39:587–601

    Google Scholar 

  64. Basu S, Kushwaha NK, Singh AK, Sahu PP, Kumar RV, Chakraborty S (2018) Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. J Exp Bot 69:2085–2102

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tong A, Yuan Q, Wang S, Peng J, Lu Y, Zheng H, Lin L, Chen H, Gong Y, Chen J, Yan F (2017) Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J Exp Bot 68:4357–4367

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Daròs JA (2017) Viral suppressors: combatting RNA silencing. Nat Plants 3:17098

    PubMed  Google Scholar 

  67. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103

    PubMed  Google Scholar 

  68. Silhavy D, Burgyán J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    CAS  PubMed  Google Scholar 

  69. Moon JY, Park JM (2016) Cross-talk in viral defense signaling in plants. Front Microbiol 7:2068

    PubMed  PubMed Central  Google Scholar 

  70. Wang MB, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285

    CAS  PubMed  Google Scholar 

  71. Jin Y, Zhao J, Guo H (2021) Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr Opin Virol 47:65–72

    Google Scholar 

  72. Pertermann R, Tamilarasan S, Gursinsky T, Gambino G, Schuck J, Weinholdt C, Lilie H, Grosse I, Golbik RP, Pantaleo V, Behrens SE (2018) A viral suppressor modulates the plant immune response early in infection by regulating microRNA activity. MBio 9:e00419-e518

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng L, Duan CG, Guo HS (2013) Inhibition of in vivo Slicer activity of Argonaute protein 1 by the viral 2b protein independent of its dsRNA-binding function. Mol Plant Pathol 14:617–622

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu Y, Dolja VV, Calvino LF, Lopez-Moya JJ, Burgyan J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang L, Wei CH, Li Y (2012) Viral suppression of RNA silencing. Sci China Life Sci 55:109–118

    CAS  PubMed  Google Scholar 

  77. Ramesh SV, Ratnaparkhe MB, Kumawat G, Gupta GK, Husain SM (2014) Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 48:1–14

    CAS  PubMed  Google Scholar 

  78. Pollari M, De S, Wang A, Makinen K (2020) The potyviral silencing suppressor HCPro recruits and employs host ARGONAUTE1 in pro-viral functions. PLoS Pathog 16:e1008965

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessing DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Benoit M (2020) The great escape: how a plant DNA virus hijacks an imprinted host gene to avoid silencing. Plant Cell 32:3051–3052

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Alamillo JM, Saénz P, García JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J 48:217–227

    CAS  PubMed  Google Scholar 

  82. Sunkar R, Li Y, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    CAS  PubMed  Google Scholar 

  83. Zhang X, Zhao H, Gao S, Wang W, Katiyar-Agarwal S, Huang H, Raikhel N, Jin H (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene MEMB12. Mol Cell 42:356–366

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Navarro L, Dunover P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  85. Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA-and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Seo JK, Wu J, Lii Y, Li Y, Jin H (2013) Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact 26:617–625

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Naqvi AR, Choudhury NR, Mukherjee SK, Haq QM (2011) In silico analysis reveals that several tomato microRNA/microRNA∗ sequences exhibit propensity to bind to tomato leaf curl virus (ToLCV) associated genomes and most of their encoded open reading frames (ORFs). Plant Physiol Biochem 49:13–17

    CAS  PubMed  Google Scholar 

  88. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    CAS  PubMed  Google Scholar 

  89. Qureshi A, Thakur N, Monga I, Thakur A, Kumar M (2014) VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database 2014:1–10

    Google Scholar 

  90. Szczesniak MW, Deorowicz S, Gapski J, Kaczynski L, Makałowska I (2012) miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res 40:D198–D204

    CAS  PubMed  Google Scholar 

  91. Szczesniak MW, Makabowska I (2014) miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acid Res 42:D74–D77

    CAS  PubMed  Google Scholar 

  92. Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinformatics 14:174

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X (2020) PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res 48:D1114–D1121

    CAS  PubMed  Google Scholar 

  94. Gurjar AKS, Panwar AS, Gupta R, Mantri SS (2016) PmiRExAt: plant miRNA expression atlas database and web applications. Database 2016:1–10

    Google Scholar 

  95. Shukla V, Varghese VK, Kabekkodu SP, Mallya S, Satyamoorthy K (2017) A compilation of Web-based research tools for miRNA analysis. Brief Funct Genom 16:249–273

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anteneh Ademe Mengistu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

This article does not contain any experiments involving human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengistu, A.A., Tenkegna, T.A. The role of miRNA in plant–virus interaction: a review. Mol Biol Rep 48, 2853–2861 (2021). https://doi.org/10.1007/s11033-021-06290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06290-4

Keywords

Navigation